• Title/Summary/Keyword: Solid-State Synthesis

Search Result 355, Processing Time 0.047 seconds

Crystal Growth for the Research Purpose (연구용 결정 성장)

  • Hur, Nam-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.108-115
    • /
    • 2011
  • Principles in the synthesis of small-sized high-quality crystals for the experimental condensed matter physics will be discussed in this paper. Synthesis process and cautions will be introduced especially for the synthesis methods which can be easily accessible to researchers. Starting from the solid state reaction which is the most common synthesis method, I will explain the quartz tube sealing that is crucial for making polycrystalline materials as well as single crystals in various conditions. Finally, basics of single crystal growth and various techniques will be introduced on the whole for the researchers who are not familiar with the material synthesis.

Synthesis and Hydration Property of 3CaO.${3Al_2}{O_3}$.$CaSO_4$ Clinker by Solid State Reaction (고상반응에 의한 3CaO.${3Al_2}{O_3}$.$CaSO_4$ 클링커의 제조 및 수화)

  • 전준영;김형철;조진상;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.459-465
    • /
    • 2000
  • 3CaO.3Al2O3.CaSO4(C4A3)clinker was prepared by solid state reaction and then its hydration property was investigated. C4A3 clinker was fired at various temperatures in the range of 700~135$0^{\circ}C$. The hydration of it was studied by XRD, DSC, Solid-state 27Al MAS NMR and SEM. According to the results, the Ca4A3 clinker was produced by reacting calcium aluminates with CaSO4 and Al2O3 and C4A3 was formed as a main phase after calcining at 120$0^{\circ}C$. The hydration products were mainly calcium monosulfoaluminate hydrate and Al(OH)3, and they were produced after 2hrs of hydration. However the hydration rate was about 74% at 3days.

  • PDF

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook;Lee, Byung-Ill;Cho, Byoung-Ki
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.

Shock-wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of $TiB_2$-Cu Nanocomposites

  • Lomovsky, O.I.;Mali, V.I.;Dudina, D.V.;Korchagin, M.A.;Kwon, D.H.;Kim, J.S.;Kwon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1084-1085
    • /
    • 2006
  • We studied formation of nanostructured $TiB_2$-Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.

  • PDF

Effect of Agglomeration of $Nb_20_5$ on Formation Reaction, Sintering and Dielectric Properties in$Pb(MG_{1/3}Nb_{2/3})O_3$ (원료분체 $Nb_20_5$의 응집상태가 $Pb(MG_{1/3}Nb_{2/3})O_3$소결, 유전특성에 미치는 영향)

  • 조영국;김진호;박병옥;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.51-59
    • /
    • 1992
  • Effect of agglomeration of $Nb_20_5$ of the same primary particle size on formation reaction and sintering of $Pb(Mg_{1/3}\;Nb_{2/3})O_3$ was examined. Both solid state reaction and molten salt synthesis were adopted. With decreasing agglomeration of $Nb_20_5$ increased the rate of formation reaction of perovskite PMN in solid state reaction, but had little influence in molten salt synthesis. It was concluded that the increase in the inhomogeneity of the dispersion state of intermediate pyrochlore with increasing agglomeration of $Nb_20_5$ retarded the formation reaction of perovskite PMN in solid state reaction, while had little influnce in molten salt synthesis due to its solution - precipitation mechanism -mainly depends on powder surface area.

  • PDF

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Peculiarities of SHS and Solid State Synthesis of ReBa2Cu3O7-x Materials

  • Soh, Deawha;Natalya, Korobova
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid-stave chase synthesis for production of high temperature superconductor materials were discussed. Oxide superconductors with general formula of $ReBa_2Cu_3O_{7-x}$ (Re=Y, Sm) haute been made by using barium oxide initial powder instead of traditional barium carbonate. Phenomena observed during the grinding of the reactants mixture are presented. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.

Synthesis of $Bi_{2+x}Sr_2Ca_{n-1}Cu_{n}O_{4+2n+d}$ compounds by SHS

  • Soh, Deawha;Cho,Yongioon;Korobova, N.;Isaikina, O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.94-97
    • /
    • 2002
  • BSCCO (2223) compound which has the highest temperature of transition to the superconducting state in the homologous series considered is synthesized by SHS. The method exploits self-sustaining solid-flame combustion reactions which develop very high internal material temperatures over short periods. This report introduces the SHS method and its advantages and discusses its application in the synthesis of superconducting materials.

  • PDF

Surface Potential Behavior of Nano $CeO_2$ Particles in Aqueous Media (수계분산매체에서 나노 $CeO_2$ 입자의 계면전위 거동)

  • 이태원;백운규;최성철;이상훈;임형섭;김철진
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.721-725
    • /
    • 2000
  • In this study, the dispersion stability of nano-sized CeO2 particles, synthesized by hydrothermal method in aqueous was evaluated from observing the surface potential behavior of CeO2 particle synthesized by solid state reaction. The isoelectric point(IEP) of nano-sized CeO2 synthesized by hydrothermal synthesis was found to be pH 9 contrary to the isoelectric point of micro-sized CeO2 synthesized by solid state reaction at pH 6.7. IEP was shifted to pH 2.0 as the addition of D-3019 from 0.1 to 1.0 wt%. The surface potential of CeO2 particles synthesized by hydrothermal synthesis was reduced as the addition of B-1001 used as a binder without change of IEP because the absorption of B-1001 polymer on the CeO2 particles shifted the shear plane of CeO2 particles outward away from the surface. This surface potential behavior was well correlated with the dispersion stability of slurry.

  • PDF