• Title/Summary/Keyword: Solid waste landfill

Search Result 158, Processing Time 0.021 seconds

Compression Characteristics of Municipal Solid Waste Codisposed with Fly Ash (플라이애쉬(F/A)가 혼합된 도시 쓰레기(MSW)의 압축 특성)

  • Park, Hyun-Il;Lee, Seung-Rae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • If MSW(Municipal Solid Waste) landfill is used as a foundation ground of construction site, the change of loading condition may cause a large amount of compression in MSW landfill. Therefore, the reinforcement for the loose compression nature of MSW landfill would be very important design factor to geotechnical engineers in considering the end-use of the landfill. In this study, a possible technique for stabilizing MSW landfill with use of codisposal of municipal solid waste and Fly Ash is discussed. In order to estimate the stabilization of compression characteristic of codisposed landfill, large compression test and lysimeter test were performed. According to the test results, as the proportion of Fly Ash increases, the compression might be reduced, but the permeability might be also reduced. Therefore, it is necessary to take into account the both characteristics changes in real application.

  • PDF

The Evaluation of Interface Shear Strength Between Geomembrane and Ceotextile (지오멤브레인/지오텍스타일의 접촉 전단강도 평가)

  • 서민우;박준범;김운영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2002
  • Various geosynthetics used as liners or protection layers are installed in the solid waste landfills. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of the bottom and cover systems in the solid waste landfills. The interface shear strength between Geomembrane and Geotexile is estimated by a large direct shear test in this study, The effects of normal stress, water existing between geosynthetics and surface condition of Geomembrae, i.e. smooth or textured, were investigated. The test results show that the effect varied depending on the level of normal stress and the type of geosynthetic combinations. The shear strength was evaluated by the Mohr-Coulomb failure criterion in this research. The shear strength parameters obtained from tests considering the site specific conditions such as normal stress, dry or wet, and surface condition of geosynthetic should be applied to the design of geosynthetics installed at the slope of the landfill to construct a safe solid waste landfill.

The Settlement Characteristics of Incheon Unsanitary Solid Waste Landfill (인천지역 비위생 매립지반의 침하특성 연구)

  • Cho, Seok-Ho;Lim, Ju-Hyun;Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.37-42
    • /
    • 2008
  • This paper estimates the long-term settlement of Incheon unsanitary solid waste landfill, which is 20 years old. The unsanitary solid waste landfill was subjected to pre-loading system over a period of 1 year, and 300 settlement monitoring provided the long term settlement data. This landfill contains relatively small amount of organic component, and therefore the initial stage of settlement was very small. The existing settlement models were examineed by comparing the observed behaviors of this site, and also they were used to predict the long-term settlement. Power Creep Law (PCL) model showed good agreement with the measured settlement obtained from the initial stage of the measurement, but other models showed satisfactory agreements after $50{\sim}70$ days of measurement.

VOLATILE ORGANIC COMPOUNDS MEASUREMENT IN THE BOUNDARY OF WASTE TREATMENT FACILITIES

  • Yim, Bong-Been;Kim, Sun-Tae
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.46-54
    • /
    • 2007
  • Concentrations of the principal volatile organic compounds, such as benzene, toluene, ethylbenzene, m,p,o-xylene, styrene, and chlorobenzene were measured at the solid waste treatment plants classified into four categories; municipal waste incinerator, municipal waste landfill site, industrial waste incinerator and industrial waste landfill site. The average concentration of VOCs in industrial waste treatment facilities was 33.43 ppb and was significantly higher than that measured at municipal waste treatment facilities (4.71 ppb). The average toluene concentrations measured at incinerators (13.05 ppb) were a little higher than those measured at landfill sites (11.54 ppb). The contribution of the waste treatment facilities to the concentration of benzene (0.35 ppb) and o-xylene (0.15 ppb) in the industrial area was relatively small. However, toluene measured in the industrial waste treatment facilities was the most abundant VOCs with the average concentration of 21.37 ppb. As a result of analyses of fingerprint, in cases of IISH and ILUS, a variety of compounds other than major VOCs were detected in high level. On the Pearson correlation analysis, the correlation was generally positive and some pairs of these VOCs were very strongly correlated (correlation coefficient > 0.75).

LEACHING OF LEAD FROM DISCARDED NOTEBOOK COMPUTERS USING THE SCALE-UP TCLP AND OTHER STANDARD LEACHING TESTS

  • Jang, Yong-Chul;Townsend, Timothy G.
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.14-27
    • /
    • 2006
  • The proper management of discarded electronic devices (often called electronic-waste) is an emerging issue for solid waste professionals throughout the world because of the large growth of the waste stream, and the content of toxic metals in them, most notably heavy metals such as lead. Notebook computers are becoming one of the major components of discarded computer devices and will continue to increase in the waste stream in the future. While the computers hold great promise for recycling, a substantial amount of this waste is often disposed in municipal solid waste (MSW) landfills. The toxicity characteristic leaching procedure (TCLP) is commonly used to simulate worse case leaching conditions where a potentially hazardous waste is assumed to be disposed along with municipal solid waste in a landfill with actively decomposing materials overlying an aquifer. The objective of this study was to examine leaching potential of lead from discarded notebook computers using the scale-up TCLP, other standard leaching tests such as California waste extraction test (Cal WET), and the synthetic precipitation leaching procedure (SPLP) and actual landfill leachates as leaching solution. The scale-up TCLP is a modified TCLP (where the device was disassembled and leached in or near entirety) to meet the intent of the TCLP. The results showed that the scale-up TCLP resulted in relatively high lead found in the leachate with an average of 23.3 mg/L. The average level was less than those by the standard TCLP and WET (37.0 mg/L and 86.0 mg/L, respectively), but much greater than those by the SPLP and the extractions with the landfill leachates (0.55 mg/L and 1.47 mg/L, respectively). The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead were identified as major factors that controlled the amount of lead leached from notebook computers. Based on the results obtained by a number of leaching tests in this study, notebook computers may present a potential leaching risk to the environment and human health upon land disposal. However, further investigation is still needed to assess the true risk posed by the land disposal of discarded notebook computers.

Study of the MSW landfill Facility of Installation and Consideration (폐기물 매립시설 설치방법 및 고려사항에 대한 고찰)

  • Kim, Sang-Keun;Kwon, Ki-Bum;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.259-266
    • /
    • 2008
  • In the past, MSW (Municipal Solid Waste) disposal was typically done by recycling, incineration, or landfilling. In South Korea prior to the late 1950's, land burial was usually accomplished by disposal in an open dump. Currently, with increasing concerns and environmental recognition, MSW disposal and landfilling is more restricted. MSW landfill facilities have been developed with certain design and construction specifications. However, these methods have a space for improvement. MSW landfill facilities follow a step wise approach of design, construction, operation and closure management after use in agreement with established environmental and sanitary standards. This study intends to give a technical guidance for installation and consideration of newly established MSW landfill facilities, and also provide an establishment and regular inspection of MSW landfill facilities.

  • PDF

A Case Study of Bottom Liner Construction Using Composite Liner Technology in a Solid Waste Landfill (복합차수층 조성기술을 이용한 폐기물매립지 바닥차수층 시공사례)

  • Lee, Kyu-Jung;Lee, Nam-Hoon;Park, Soo-Young;Jeon, Won-Pyo;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • Modern waste management units, so-called "landfills" protect human health and environment from hazardous leachate and gas. Accordingly, it must be constructed with a bottom liner system that includes a gas collection layer. Leachate is the contaminated liquid that drains from the waste material pollutes ground water. For this reason. bottom liner system must have durability and low hydraulic conductivity (in case of compacted clay liner, no more than $1{\times}10^{-7}cm/sec$ ). P county in Kangwon province constructed a solid waste landfill with bottom liner system. In this study. it is mainly introduced that the test results on construction and quality control of bottom liner system by "Multiple composite liner construction technology", which is selected for bottom liner system in P solid waste landfill.

  • PDF

A Comparative Analysis on Physico-Chemical Characteristics of MSW (Municipal Solid Waste) from Dwelling Site and Landfill Site - A Case Study of the Chungju City - (생활폐기물의 발생원과 최종 매립장에서 물리화학적 특성 비교 분석 - 충주시를 중심으로 -)

  • Cho, Byungyeol;Yeon, Ikjun;Lee, Byungchan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.47-52
    • /
    • 2009
  • The comparative analysis on physico-chemical characteristics of municipal solid waste from dwelling site and landfill site were performed to provide the fundamental information of waste management in Chungju city. It was analysed and evaluated the bulk density, physical component, three major component, chemical component, and heating value of MSW. The physical components depended on the sampling site in dwelling site and landfill site. But, by the ultimate analysis, the chemical composition was almost similar to result for municipal solid waste from dwelling site and landfill site. Therefore, it is necessary to investigate the physical components according to sampling site for the MBT to introduce for combustible municipal solid waste pre-treatment, but it needs the chemical composition from landfill site to design the incinerator. The physical composition showed that the combustible and the noncombustible occupied 87.4% and 12.6% respectively. In case of three component analysis, the moisture, the combustible, and the ash were 27.6, 60.5, 11.9% respectively. The chemical composition through the element analysis were C (50.1%), H (6%), O (39.5%), N (1.9%), S (0.5%), and Cl (1.3%).

  • PDF

Municipal Solid Waste Management: Challenges and Opportunities in Nepal

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • Nepal is one of the least urbanized countries in the world where more than 80% of the total population live in rural areas. In recent years, the rate of urbanization became rampant which ultimately accelerated immense pressure on municipal services, especially on managing the ever increasing amount of wastes. Due to lack of technology, infrastructure and financial capacity management of increasing amount of solid waste has become a major challenge in municipalities of Nepal. The indiscriminate dumping of solid wastes already affected the urban environment by creating a serious occupational health and environmental hazard to the vicinity of the dumping sites. However, there is great possibility of recovering methane from the landfill sites since the typical Nepalese municipal solid waste contains more than 65% of organic wastes. Despite having enormous potential of generating electricity from hydropower, Nepal is facing acute shortage of energy. Therefore, comprehensive scientific research and development is necessary for making solid waste to environmentally friendly by converting waste to the energy.

Assessment of Leachate from Solid Waste Landfills in Daechong Lake Upper Drainage Basin (대청호 상류유역 매립지의 침출수 분석 및 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.161-170
    • /
    • 2003
  • To investigate the characteristics of 17 solid waste landfills in the upper drainage basin of Lake Daechong, the landfill sites were surveyed, the leachate of these landfills were analyzed, and the analysis results were assessed from standpoint of water contamination. Sanitary landfills which are now being operated are relatively well equipped with facilities such as leachate collection, daily soil cover and landfill gas treatment devices. But a few of open-dumping landfills were leaking leachate apparently and were supervised improperly and neglectfully by local governments. Some of sanitary landfills exceeded the COD permission criteria of leachate effluent, and some of open-dumping landfills exceeded SS, T-P, Pb, As, Fe, Mn permission criteria of leachate effluent. To improve the water quality of Lake Daechong which is utilized for supplying drinking water, agricultural water, and industrial water to the great part of Chungchong area, the adequate and prompt measures for preventing Daechong Lake water contamination from landfills leachate is necessary.