• Title/Summary/Keyword: Solid state reduction

Search Result 151, Processing Time 0.019 seconds

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Initial Sintering Behaviour of the Powder Injection Molded W-15wt%Cu Nanocomposite Powder (분말사출성형한 W-l5wt%Cu 나노복합분말의 초기소결거동)

  • 윤의식;유지훈;이재성
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.258-264
    • /
    • 1998
  • The initial sintering behaviour of the powder injection molded (PIMed) W-l5wt%Cu nanocomposite powder was investigated. The W-Cu nanocomposite powder was produced by the mechanochemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-CuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 hours in hydrogen at mosphere. The sintering behaviour was examined and discussed in terms of microstructural developments such as W-Cu aggregate formation, pore size distribution and W grain growth. The volume shrinkage of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast local densification in the PIM. Remarkable decrease of carbon and oxygen in the PIM enhanced local densification in the early stage of solid state sintering process with eliminating very fine pores less than 10 nm. In addition, such local densiflcation in the PIM is presumably responsible for mitigating of W-grain growth in the initial stage.

  • PDF

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Mechanochemical Approach for Oxide Reduction of Spent Nuclear Fuels for Pyroprocessing

  • Kim, Sung-Wook;Han, Seung Youb;Jang, Junhyuk;Jeon, Min Ku;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.255-266
    • /
    • 2021
  • Solid-state mechanochemical reduction combined with subsequent melting consolidation was suggested as a technical option for the oxide reduction in pyroprocessing. Ni ingot was produced from NiO as a starting material through this technique while Li metal was used as a reducing agent. To determine the technical feasibility of this approach for pyroprocessing, which handles spent nuclear fuels, thermodynamic calculations of the phase stabilities of various metal oxides of U and other fission elements were made when several alkaline and alkali-earth metals were used as reducing agents. This technique is expected to be beneficial, not only for oxide reduction but also for other unit processes involved in pyroprocessing.

Sustainability in PET Packaging

  • Shin, Yang-Jai;Kang, Dong-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.105-111
    • /
    • 2009
  • In this work, source reduction of poly ethylene terephthalate (PET) packaging are discussed as aspect of sustainability, such as reuse, refill and recycling through the various treatment methods and historical studies for municipal solid waste (MSW) disposal. Since PET has good chemical, physical and mechanical properties, and provides good oxygen and carbon dioxide barrier properties, PET is one of the most widely used thermoplastic polyester in the U.S. and around the world. As the demand for non-renewable PET is increasing, several approaches have been developed to meet economical feasibility and environmental responsibility without degrading material performance. Several companies, such as Coca-Cola Co., Easterform Packaging Co. and Kraft, have tried to develop lightweight PET bottle, and some of lightweight PET bottles are already commercialized. Reuse and refilling for PET container is well developed in Europe, such as Denmark, German and Netherland by supportive legislation and policies. Recycling process is the best way to economically reduce PET waste. In consequence, advanced technique and further development must be provided due to increasing PET packaging waste.

  • PDF

The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer (고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구)

  • Lee, Hyun-Jung;Yeom, Dongwoo;Lee, Kyu-In
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Synthesis and Luminescent Characteristics of $BaGa_{2}S_{4}:Eu^{2+}$ Phosphor by Solid-state Method

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.13-16
    • /
    • 2006
  • II-$III_{2}-(S,Se)_{4}$ structured of phosphor have been used at various fields because they have high luminescent efficiency and broad emission band. Among these phosphors, europium doped $BaGa_{2}S_{4}$ was prepared by solid-state method. We investigated the possibility of applying [ ] due to emissive property of UV region. Also, general sulfide phosphors were synthesized by using injurious $H_{2}S$ $CS_{2}$ gas. However, this study prepared $BaGa_{2}S_{4}:Eu^{2+}$ phosphor is addition to excess sulfur under 5% $H_{2}$/95% $N_{2}$ reduction atmosphere. So, this process could involved large scale synthesis because of non-harmfulness and simple process. The photo-luminescence efficiency of the prepared $BaGa_{2}S_{4}:Eu^{2+}$ phosphor increased by 20% compared with commercial $BaGa_{2}S_{4}:Eu^{2+}$ phosphor. From this, we could conclude that the prepared $BaGa_{2}S_{4}:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.