• 제목/요약/키워드: Solid state diffusion brazing

검색결과 3건 처리시간 0.017초

열처리온도 및 시간에 따른 알루미늄 주조재의 고상확산 접합 특성 (Solid State Diffusion Brazing of the Aluminum Alloy Castings According to the Heat Treatment Conditions)

  • 선주현;신승용;홍주화
    • 열처리공학회지
    • /
    • 제21권6호
    • /
    • pp.300-306
    • /
    • 2008
  • Solid state diffusion brazing of aluminum castings (AC4C) and wrought alloys (Al6061) was conducted in order to improve thermal conductivity and temperature uniformity of the aluminum heater which was generally fabricated by casting method. Tensile strength and thermal conductivity are raised with increasing brazing temperature, obtaining 122.5 MPa and $206W/m{\cdot}K$ at $540^{\circ}C$ 5hrs brazing conditions, respectively. The diffusion brazed heater, shows maximum temperature difference of $4^{\circ}C$, exhibits a enhanced temperature uniformity compared with the cast heater having the maximum temperature difference of $11^{\circ}C$.

A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究 (A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • 제10권3호
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향 (Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20)

  • 김준태;허회준;김현준;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.