• Title/Summary/Keyword: Solid solution treatment

Search Result 263, Processing Time 0.026 seconds

Determination of Solid Solution Treatment Condition of Mg-6Al-xZn(x=0,1,2) Alloys Fabricated by Squeeze Casting Method (용탕단조법에 의해 제조된 Mg-6Al-xZn(x=0,1,2) 합금의 용체화처리조건 규명)

  • Kang, Min-Cheol;Yoon, Il-Sung;Kim, In-Bae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.281-288
    • /
    • 1996
  • This study has been investigated the influence of solid solution treatment on the microstructure of Mg-6Al-xZn(x=0,1,2) alloys fabricated by squeeze casting process. The products having clean surface and fine microstructure are fabricated by adopting the liquid metal forging method. The microstructures of as-fabricated state show ${\beta}(Mg_{17}Al_{12})$ precipitates between the dendrite boundaries. It is found that the hardness of the alloys is increased with increasing amount of zinc due to the solid solution hardening effect of zinc. In the changes of microstructure upon solid solution treatment time at $405^{\circ}C$, ${\beta}$ phases are dissolved in ${\alpha}$ matrix up to 1hr and the microstructure are coarsened rapidly after 2hrs. The microhardness are decreased rapidly until 1hr of solution treatment time and then stabilized. From the above results, it is concluded that the optimum solid solution treatment condition for Mg-6Al-xZn alloys is at $405^{\circ}C$ for 1hr. The solution treatment time is greatly reduced comparing to conventional casting(at $385{\sim}418^{\circ}C$ for 10~14hrs) due to the formation of the super-saturated solid solution by liquid metal forging.

  • PDF

Comparison of Damping Capacities in Mg-Al and Mg-Zn Solid Solutions (Mg-Al 및 Mg-Zn 고용체의 진동감쇠능 비교)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.389-395
    • /
    • 2023
  • Damping capacities of Mg-2.5%Al and Mg-2.5%Zn (in atomic) solid solutions were comparatively investigated in order to clarify the influence of solutionized Al and Zn elements on the damping characteristics of Mg. In this study, solid solutions with similar grain size were obtained by solution treatment at 678 K for different times (24 h for Mg-2.5%Al and 36 h for Mg-2.5%Zn), followed by water quenching at RT. The Mg-2.5%Al and Mg-2.5%Zn solid solutions showed similar damping capacities in the strain-amplitude independent region of 1 × 10-6 ~ 1 × 10-5 and in the strain-amplitude dependent region below 6 × 10-4, over which the Mg-2.5%Zn solid solution possessed better damping capacity than the Mg-2.5%Al solid solution. The damping tendencies depending on strain-amplitude for the two solid solutions were analyzed and discussed in terms of similar length between weak pinning points (solutes) and different solute/dislocation interaction forces in Granato-Lücke model.

High Pressure Synthesis and Physical Properties of the Solid Solution, $SrLaAl_{1-x}Ni_xO_4(0

  • 변송호
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1084-1088
    • /
    • 1995
  • A complete solid solution (SrLaAl1-xNixO4) between insulating SrLaAlO4 and metallic SrLaNi(Ⅲ)O4 oxides were prepared under high oxygen pressure (1.5 kbar, 800 ℃). They have tetragonal K2NiF4-type structure in all the solid solution range. Compared with lattice parameters of the same solid solution prepared under normal condition (1 bar, 1200 ℃), large decrease in the c-parameter was induced by high pressure treatment while no noticeable variation of the a-parameter was observed. Although marked changes of structural parameters, magnetic susceptibilities, and electron paramagnetic resonance spectra were consistently occurred before and after x=0.5, overall behaviors were essentially the same with those of solid solution prepared under normal condition. Such a phenomenon is explained by assuming the formation of partially filled narrow σ*x2-y2 band for x>0.5. Lattice contraction along the c-axis by high pressure treatment seems not to broaden this band. Particularly, the continuous absorption characteristic of a high free carrier concentration for x>0.5 and the absence of Ni-O in-plane stretching mode in the infrared absorption spectra supports this picture. However, the conductivities increasing with temperature for all solid solution suggest that some localization character, of probably Anderson type, remains for x>0.5.

The Solution Treatment on Thixo-extrudates of Semi-solid Al-Zn-Mg Alloy (Al-Zn-Mg 반용융 압출재의 용체화처리)

  • Kim, Dae-Hwan;Kim, Hee-Kyung;Eom, Jeong-Pil;Lim, Su-Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2013
  • In the present study, the microstructure and solution treatment response of Al-Zn-Mg alloys bars by thixo-extrusion was investigated. The alloy bars were solution treated at 400, 430, 460 and $490^{\circ}C$ for various times. In order to examine the microstructures and phase analysis of the samples after solution treatment, it was performed by optical and scanning electron microscopy. And, Vickers hardness and electrical conductivity was measured on the solution treated samples for each condition to investigate the solution treatment response of extruded bars during solution treatment. The results show that the optimum solution heat treatment conditions of thixo-extruded Al-Zn-Mg alloy for minimization of the grain growth and degradation promotion of the second phase is a temperature of $460^{\circ}C$ and holding time of 0.5 to 2 h.

On the Strengthening mechanisms of INCONEL 690 (인코넬 690의 강화기구에 관한 연구)

  • 허무영;박용수;안성욱
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.213-220
    • /
    • 1997
  • The microstructure of the inconel 690 alloy was varied by the solution treatment and the thermal treatment. The specimens having different microstructures were examined in order to understand the strengthening mechanism of the inconel 690. The level of supersaturation of carbon in the solid solution was increased by applying a longer solution treatment at 115$0^{\circ}C$. As increased carbon content in the solid solution, more carbides precipitated during the thermal treatment at $700^{\circ}C$. Since the carbides played a role of obstacle on the movement of dislocations, a higher tensile strength was obtained in the sample having a large number of carbider. The accumulation of dislocations at the grain boundary carbides caused the development of intergranular fracture which led to a lower elongation.

  • PDF

Changes in Mechanical Properties according to Solid Solution Treatment of Cu-1.6%Co-0.38%Si Alloy (Cu-1.6%Co-0.38%Si 합금의 용체화처리에 따른 기계적 성질의 변화)

  • Kwak, Wonshin;Lee, Sidam
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • Cu-Co-Si based alloy has a strengthening mechanism for Co2Si intermetallic compounds deposited on the copper matrix after aging treatment and the solution treatment has a key influence on the strength and electrical conductivity of the final products. In this paper, the Cu-1.6%Co-0.38%Si alloy was fixed at the time and the solution treatment temperature was set at a temperature in the range of 800 to 950℃, and the change in mechanical properties was observed by fixing the temperature at 950℃ and changing the time. The microstructure was observed using an electron microscope and an optical microscope, and the changes in hardness, electrical conductivity, and bending workability after aging treatment were investigated. When the solution treatment time is less than 20 seconds, the solution treatment is not sufficient and the formation of precipitates contributing to the increase in hardness decreases and the hardness decreases after the aging treatment, and in more than 50 seconds, the hardness decreases due to the coarsening of the grains and the bending workability got worse.

Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting (Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가)

  • Kim, Myoung-Gyun;Hwang, Seok-Min
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

Change of Mechanical Properties During Heat Treatment of Diecast ADC12 Alloy (다이캐스팅 ADC12 합금의 열처리 전후의 기계적 특성변화)

  • Kang, Shin-Wook;Park, Kyeong-Seob;Oh, Eun-Ho;Shim, Jung-Il;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • We investigated the effect of heat treatment on an ADC12 alloy produced using diecasting. The heat treatment used in this study was a typical T6 process: a solid solution treatment followed by an artificial aging treatment. As-cast specimens were solid-solution-treated at $500^{\circ}C$ and $530^{\circ}C$ for 1-16 hr, and aged at $160^{\circ}C$ and $180^{\circ}C$ for 1-8 hr. Microstructural changes in the alloy during the heat treatment were observed. Changes in mechanical properties of the alloy were measured using a micro-Vickers hardness tester. Finally, we determined the optimal heat treatment conditions for the diecast ADC12 alloy.

Solution-based fabrication of germanium sulphide doped with or without Li ions for solid electrolyte applications

  • Jin, Byeong Kyou;Cho, Yun Gu;Shin, Dong Wook;Choi, Yong Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.110-113
    • /
    • 2012
  • Ge-S and Li-Ge-S powders were synthesized via solution-based process in order to employ chalcogenide-based solid electrolyte for use in Li secondary batteries. GeCl4 and thioacetamide in combination result in Ge-S powders of which major crystalline phase becomes GeS2 where the tetragonal and orthorhombic phases coexist after heat treatment. A chemical treatment using NaOH brings about the reduction of chlorine in the powders obtained. However, the heat treatment at 300 ℃ is more effective in minimizing the chlorine content. When lithium chloride is used as the precursor of Li ions, the LiCl powders are agglomerated with an inhomogeneous distribution. When Li2S is used, the Li-Ge-S powders are distributed more uniformly and the orthorhombic GeS2 phase dominates in the powders.

Optimization of Solid Solution Treatment Process for a High Pressure Die Casting Al-10Si-0.3Mg-0.6Mn alloy to avoid Blistering and Improve the Strength of the Alloy (고압 다이캐스팅으로 제조된 Al-10Si-0.3Mg-0.6Mn 합금에서 blister 발생과 강도의 균형을 고려한 최적 열처리 공정 설계)

  • Kim, Soo-Bae;Cho, Young-Hee;Jo, Min-Su;Lee, Jung-Moo
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2020
  • The aim of this study was to optimize a solid solution treatment for a high pressure die casting Al-10Si-0.3Mg-0.6Mn alloy to avoid blistering and to improve the strength of the alloy. To achieve this goal, the number density of the blisters and the strength of the alloy under various solid solution treatment (SST) conditions were evaluated. The SST was performed at 470, 490, 510 and 530℃ for 20, 60, 120, 240 and 480 min on the alloy. The number density of the blisters increased with the increasing temperature and time of the SST and the defect area fraction. The yield strength of the alloy after the T6 heat treatment increased with the increasing SST temperature and time. Based on the results, it is suggested that SST should be performed at 510℃ within 60 min. or at 470 and 490℃ within 240 min. to avoid blistering and to improve the strength.