• Title/Summary/Keyword: Solid oxide fuel cell(SOFC)

Search Result 341, Processing Time 0.023 seconds

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Effects of Cobalt Protective Coating Prepared by DC Electroplating on Ferritic Stainless Steel for SOFC Interconnect (직류 전기도금을 이용한 고체산화물 연료전지 금속연결재용 페라이트계 스테인리스 스틸의 코발트 보호막 코팅 효과)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul;Yoo, Young-Sung;Lee, Dok-Yol
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2009
  • We investigated the influences of cobalt coating deposited by DC electroplating on the ferritic stainless steel, STS 430, as a protective layer on a metallic interconnect for SOFC applications. Cobalt coated STS 430 revealed a uniform and denser-packing oxide surface and a reduced growth rate of $Cr_2O_3$ scales after oxidation at $800^{\circ}C$in air. Cobalt coating layer was oxidized to $CoCo_2O_4$ and Co containing mixed oxide spinels such as $Co_2CrO_4$, $CoCr_2O_4$, and $CoCrFeO_4$. The area specific resistance value of Co coated sample was $0.020\;{\Omega}cm^2$ lower than that of uncoated at $800^{\circ}C$ in air during 500 h. After 1000 h oxidation, cobalt oxide coating layer suppressed chromium outward diffusion.

Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC (열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구)

  • Park, Kwang-Yeon;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

Operation Results of the SOFC System Using 2 Sub-Module Stacks (2 모듈 스택을 이용한 SOFC 시스템 운전결과)

  • Lee, Tae-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.

Performance Analysis of Gasoline Fueled Marine Solid Oxide Fuel Cell System (가솔린 연료형 SOFC시스템 성능 평가에 관한 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Park, Sang-Kyun;Kim, Mann-Eung;Lim, Tae-Woo;Kim, Jong-Su;Oh, Sae-Jin;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.740-749
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of gasoline fueled SOFC system and to analyze the influence of operating temperature, current density, S/C, and H2 utilization ratio. The results are compared with the methane fueled system. The results show that the cell voltage and $O_2$ utilization ratio are major factors on the performance of system and the gasoline fueled SOFC system have lower efficiency than the methane fueled system.

Mo,Cu-doped CeO2 as Anode Material of Solid Oxide Fuel Cells (SOFCs) using Syngas as Fuel

  • Diaz-Aburto, Isaac;Hidalgo, Jacqueline;Fuentes-Mendoza, Eliana;Gonzalez-Poggini, Sergio;Estay, Humberto;Colet-Lagrille, Melanie
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.246-256
    • /
    • 2021
  • Mo,Cu-doped CeO2 (CMCuO) nanopowders were synthesized by the nitrate-fuel combustion method aiming to improve the electrical and electrochemical properties of its Mo-doped CeO2 (CMO) parent by the addition of copper. An electrical conductivity of ca. 1.22·10-2 S cm-1 was measured in air at 800℃ for CMCuO, which is nearly 10 times higher than that reported for CMO. This increase was associated with the inclusion of copper into the crystal lattice of ceria and the presence of Cu and Cu2O as secondary phases in the CMCuO structure, which also could explain the increase in the charge transfer activities of the CMCuO based anode for the hydrogen and carbon monoxide electro-oxidation processes compared to the CMO based anode. A maximum power density of ca. 120 mW cm-2 was measured using a CMCuO based anode in a solid oxide fuel cell (SOFC) with YSZ electrolyte and LSM-YSZ cathode operating at 800℃ with humidified syngas as fuel, which is comparable to the power output reported for other SOFCs with anodes containing copper. An increase in the area specific resistance of the SOFC was observed after ca. 10 hours of operation under cycling open circuit voltage and polarization conditions, which was attributed to the anode delamination caused by the reduction of the Cu2O secondary phase contained in its microstructure. Therefore, the addition of a more electroactive phase for hydrogen oxidation is suggested to confer long-term stability to the CMCuO based anode.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells

  • Lee, Kyoung Jin;Chung, Jae Hun;Lee, Min Jin;Hwang, Hae Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.

Fabrication and Performance Test in Stacks up to 1kW Planar Solid Oxide Fuel Cell (1kW 평판형 SOFC 스택제작 및 성능평가)

  • Cho, Nam-Ung;Hwang, Soon-Cheoi;Han, Sang-Moo;Kim, Yeong-Woo;Kim, Seung-Goo;Jun, Jae-Ho;Kim, Do-Hyeong;Jun, Joong-Hwan
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.5-13
    • /
    • 2007
  • Stacks of solid oxide fuel cell with 1kW max power performance were designed on planar type employing anode-supported cells and metallic interconnects. The stacks composed of 3-cells, 8-cells, and 16-cells were fabricated and tested in serials by using anode-supported cells purchased from Indec, and sealants/interconnects prepared at RIST. In the performance test of the final 16-cells stack, OCV was recorded to be 16.7V. The peak power and the power density showed 1 kW, $0.77W/cm^2$ at $820^{\circ}C$, respectively. In addition, the long-term degradation rate of the power exhibited 2.25 % during 500h at $750^{\circ}C$.

  • PDF