• 제목/요약/키워드: Solid oxide cells

검색결과 329건 처리시간 0.028초

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

등유 개질가스를 이용한 고체산화물 연료전지 스택의 시스템 구성과 운영 (System configuration and operation for Kerosene-driven SOFC stack)

  • 김선영;윤상호;배중면;유영성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2144-2148
    • /
    • 2008
  • Kerosene-driven solid oxide fuel cell (SOFC) system with reformer, desulfurizer and after-burner was mainly developed for this study. Originally the system was developed for 1kW class SOFC system for residential power generation (RPG) application. As a preliminary study of 1kW class SOFC system operation, a short stack was applied to the system. The short stack consists of 7 cells of $10cm{\times}10cm$ area and was operated at $720^{\circ}C$. The effect of anode inlet gas composition to stack performance was investigated. Firstly, I-V characteristics of SOFC with different fuel of kerosene and hydrogen were studied. Secondly $CH_4$ internal reforming was performed at various anode inlet gas compositions of $H_2$, $CH_4$ and $H_2O$. Through these experiments the effects of each anode inlet gas component to stack performance were analyzed and the significant operating parameters were iscussed.

  • PDF

딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상 (Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns)

  • 쿠엔;이동근;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

1 kWe 급 고체산화물 연료전지 스택에서의 유동 해석 (Numerical Analysis in a 1 kWe SOFC Stack for the Flow Phenomena)

  • 이근우;김영진;윤호원;김현진;윤경식;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.196-204
    • /
    • 2023
  • This study performed the numerical analysis of the internal flow phenomena of 1 kWe-class solid oxide fuel cell (SOFC) stacks with internal manifold type and planar cells using commercial computational fluid dynamics (CFD) software, Star-CCM+. In particular, the locations where the turbulent phenomena occur inside the SOFC stack were investigated. In addition, the laminar flow model and the standard k-ε turbulent model were used to calculate the SOFC stack, separately. And, the calculation results of both laminar and turbulent models were compared. The calculation results showed that turbulent phenomena occurred mainly in the cathode flow. Especially, the turbulent phenomena were found in the cathode inlet/outlet region, and local turbulence occurred in the end plate near the inlet pipe.

연료전지용 LSGM 페로브스카이트계 전해질의 합성 및 특성 연구 (Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell)

  • 성영훈;조승환;;김도경
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.696-702
    • /
    • 2007
  • The family of (Sr,Mg)-doped $LaGaO_3$ compounds, which exhibit high ionic conductivity at $600-800^{\circ}C$ over a wide range of oxygen partial pressure, appears to be promising as the electrolyte for intermediate temperature solid oxide fuel cells. Conventional synthesis routes of (Sr,Mg)-doped $LaGaO_3$ compounds based on solid state reaction have some problems such as the formation of impurity phases, long sintering time and Ga loss during high temperature sintering. Phase stability problem especially, the formation of additional phases at the grain boundary is detrimental to the electrical properties of the electrolyte. From this point of view, we focused to synthesize single phase (Sr,Mg)-doped $LaGaO_3$ electrolyte at the stage of powder synthesis and to apply relatively low heat-treatment temperature using novel synthesis route based on combustion method. The synthesized powder and sintered bulk electrolytes were characterized by XRD, TG-DTA, FT-IR and SEM. AC impedance spectroscopy was used to characterize the electrical transport properties of the electrolyte with the consideration of the contribution of the bulk lattice and grain boundary to the total conductivity. Finally, relationship between synthesis condition and electrical properties of the (Sr, Mg)-doped $LaGaO_3$ electrolytes was discussed with the consideration of phase analysis results.

무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가 (Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell)

  • 한원규;주정운;황길호;서현석;신정철;전재호;강성군
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

고온형 연료전지 기반 통합형 발전시스템 - 연구개발 동향 고찰 - (Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status -)

  • 김동섭;박성구
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.299-310
    • /
    • 2009
  • Fuel cells are expected to be promising future power sources in both aspects of thermal efficiency and environmental friendliness. Accordingly, worldwide research and development efforts have been enormously increasing recently in various applications such as power plants, transportation and portable power sources. Among others, high temperature fuel cells, such as solid oxide fuel cells and molten carbonate fuel cells, are suitable for electric power plants. Moreover, their high operating temperature is quite appropriate to construct further advanced integrated systems. This paper reviews recent literatures on research and development of integrated power generation systems based on high temperature fuel cells. Research and development efforts are summarized in the area of fuel cell/ gas turbine hybrid systems, application of carbon capture technology to fuel cell systems, integration of coal gasification with fuel cells, and the use of alternative fuels.

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절 (Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate)

  • 지상훈;장춘만;정우철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.