• Title/Summary/Keyword: Solid oxide

Search Result 1,207, Processing Time 0.032 seconds

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation (하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토)

  • Donghyun Kim;Sunghyun Bae;Seongmin Kim;Seongsoo Han;Yosep Han;Gi Woon Kwon
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.48-56
    • /
    • 2024
  • In this study, physical property evaluation and physical separation of the target product were performed to investigate the possibility of using sewage sludge gasification solid residue (GSRs) as a circulating resource. Firstly, the GSRs used in this study was supplied by Sudokwon Landfill Management Corporation, and generally the GSRs was in the form of porous pellets with a particle size of several millimetres. In addition, the partially black areas were confirmed to be unburned and ungasified carbon, and the average carbon content was 5%. In addition, the content of silica, alumina and phosphorus oxide was more than 70% of the total content. It was confirmed that the metallic components of the wet grinding product were separated into individual elements. As a physical separation of metallic and non-metallic components was required, it was finally found that flotation screening was suitable. Accordingly, cationic and anionic surfactants were selected to separate metallic components in which a relatively large amount of non-metallic components were concentrated, and the separation characteristics were confirmed. As a result, it is expected that the concentration of non-metallic components such as silica, alumina and phosphorus will be easier than the separation of metallic components. Therefore, since it is possible to physically treat the gasified sludge residue, it is judged to have potential as a circular resource according to the proposed recycling method for the separated product.

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries (리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성)

  • Choi, Young-Jin;Ryu, Ho-Suk; Cho, Gyu-Bon;Cho, Kwon-Koo;Ryu, Kwang-Sun;Kim, Ki-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2009
  • $\beta-Ga_{2}O_{3}$ nanorods were synthesized by chemical vapor deposition method using nickel-oxide nanoparticle as a catalyst and gallium metal powder as a source material. The average diameter of nanorods was around 160 nm and the average length was $4{\mu}m$. Also, we confirmed that the synthesis of nanorods follows the vapor-solid growth mechanism. From the results of X-ray diffraction and HR-TEM observation, it can be found that the synthesized nanorods consisted of a typical core-shell structure with single-crystalline $\beta-Ga_{2}O_{3}$ core with a monoclinic crystal structure and an outer amorphous gallium oxide layer. Li/$\beta-Ga_{2}O_{3}$ nanorods cell delivered capacity of 867 mAh/g-$\beta-Ga_{2}O_{3}$ at first discharge. Although the Li/$\beta-Ga_{2}O_{3}$ nanorods cell showed low coulombic efficiency at first cycle, the cell exhibited stable cycle life property after fifth cycle.

Decreases Nitrous Oxide Emission and Increase Soil Carbon via Carbonized Biomass Application of Orchard Soil (과수원 토양의 탄화물 시용에 따른 아산화질소 발생량 감소와 토양탄소 증가효과)

  • Lee, Sun-il;Kim, Gun-yeob;Choi, Eun-jung;Lee, Jong-sik;Jung, Hyun-cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • BACKGROUND: Carbonized biomass is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after carbonized biomass addition. METHODS AND RESULTS: The carbonized biomass was made from a pyrolyzer, which a reactor was operated about $400{\sim}500^{\circ}C$ for 5 hours. The treatments were consisted of a control without input of carbonized biomass and two levels of carbonized biomass inputs as 6.06 Mg/ha for CB-1 and 12.12 Mg/ha for CB-2. Emissions of $CO_2$ and $N_2O$ from orchard soil were determined using closed chamber for 13 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were $209.4g\;CO_2/m^2$ for CB-1, $206.4g\;CO_2/m^2$ for CB-2 and $214.5g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was similar in carbonized biomass input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $4,478mg\;N_2O/m^2$ for control, $3,227mg\;N_2O/m^2$ for CB-1 and$ 2,324mg\;N_2O/m^2$ for CB-2 at the end of experiment. Cumulative $N_2O$ emission contents significantly decreased with increasing the carbonized biomass input. CONCLUSION: Consequently the carbonized biomass from byproducts such as pear branch residue could suppress the soil $N_2O$ emission. The results fromthe study imply that carbonized biomass can be utilized to reduce greenhouse gas emission from the orchard field.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Effect of Substrate Temperature and Growth Duration on Palladium Oxide Nanostructures (팔라듐 옥사이드 나노구조물의 성장에서 기판 온도와 성장 시간의 효과)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2019
  • Palladium (Pd) is widely used as a catalyst and noxious gas sensing materials. Especially, various researches of Pd based hydrogen gas sensor have been studied due to the noble property, Pd can be adsorbed hydrogen up to 900 times its own volume. In this study, palladium oxide (PdO) nanostructures were grown on Si substrate ($SiO_2(300nm)/Si$) for 3 to 5 hours at $230^{\circ}C{\sim}440^{\circ}C$ using thermal chemical vapor deposition system. Pd powder (source material) was vaporized at $950^{\circ}C$ and high purity Ar gas (carrier gas) was flown with the 200 sccm. The surface morphology of as-grown PdO nanostructures were characterized by field-emission scanning electron microscopy(FE-SEM). The crystallographic properties were confirmed by Raman spectroscopy. As the results, the as-grown nanostructures exhibit PdO phase. The nano-cube structures of PdO were synthesized at specific substrate temperatures and specific growth duration. Especially, PdO nano-cube structrures were uniformly grown at $370^{\circ}C$ for growth duration of 5 hours. The PdO nano-cube structures are attributed to vapor-liquid-solid process. The nano-cube structures of PdO on graphene nanosheet can be applied to fabricate of high sensitivity hydrogen gas sensor.

Fabrication and Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Shin, Dong-Ryul;Lim, Y.E.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1547-1549
    • /
    • 1999
  • As a preliminary experiment for the development of anode-supported tubular cell with proper porosity, we have investigated the anode substrate and the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the caron content increased, the porosity of the anode substrate increased slightly and the carbon content with proper porosity was obtained at 30 vol.%. The anode tube was fabricated by extrusion process and the electrolyte layer was coated on the anode tube by slurry dipping process. The anode-supported tube was cofired successfully. Their sintered property and microstructure were examined and the porosity of the anode tube was 35%. From the gas permeation test, the anode tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense. Based upon these experimental results. we will fabricate and test the anode-supported tubular cell.

  • PDF

Evaluation of Ni-YSZ Anode fabricated by Spark Plasma Sintering for SOFC Application (방전플라즈마 소결공법에 의해 제작된 SOFC용 Ni-YSZ Anode의 특성평가)

  • Chang, Se-Hun;Choi, Jung-Chul;Choi, Se-Weon;Kim, Ho-Sung;Oh, Ik-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.405-410
    • /
    • 2008
  • SOFC (Solid Oxide Fuel Cell) Ni-YSZ anode was fabricated by the spark plasma sintering (SPS) process and its microstructure and electrical properties were investigated in this study. The spark plasma sintering process was carried out at $800{\sim}1000^{\circ}C$ for holding time of 5 min under 40 MPa. To fabricate Ni-YSZ anode, the SPS processed specimens were reduced at $800^{\circ}C$ under $H_2$ atmosphere. The reduced specimens showed relative density of $48.4{\sim}64.8%$ according to sintering temperature. And also, the electrical conductivity of reduced specimens after sintering at 900 and $1000^{\circ}C$ showed $480{\sim}600$ (S/cm) values at the measuring range of $600{\sim}900^{\circ}C$.

Characteristics of Cathode material in SOFC (고체 전해질형 연료전지의 산소극 재료에 대한 연구)

  • Park, J.H.;Park, T.G.;Eom, S.W.;Kim, G.Y.;Moon, S.I.;Lim, H.C.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1051-1053
    • /
    • 1995
  • Nowadays perovskite $La_{1-x}Sr_xMnO_3$ is preferred cathode material in Solid Oxide Fuel cell(SOFC). The $La_{1-x}Sr_xMnO_3$ with Sr contents ranging $x=0{\sim}1.0$ were prepared by a citrate method. These powders were characterized by usual means like TG/DTA, X-ray diffraction analysis. The samples used for measuring thermal expansion were prepared as pellets by cold pressing and subsequent sintering in air at $1200^{\circ}C$ for 5 hours. To measure the by-product of $La_{1-x}Sr_xMnO_3$ reacted with 8mol% YSZ, that samples were sintered at $1200^{\circ}C$ for 5 hours.

  • PDF