• Title/Summary/Keyword: Solid carbon

Search Result 985, Processing Time 0.036 seconds

Growth of Nanocrystalline Graphite on Sapphire by Solid Carbon Source Molecular Beam Epitaxy

  • Jerng, S.K.;Yu, D.S.;Kim, Y.S.;Ryou, Jung-A;Hong, Suk-Lyun;Kim, C.;Yoon, S.;Efetov, D.K.;Kim, P.;Chun, S.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.51-51
    • /
    • 2011
  • We have grown nanocrystalline graphite on sapphire substrate by using solid carbon source molecular beam epitaxy. Changes of structure from amorphous carbon to nanocrystalline graphite controlled by the growth temperature have been investigated by Raman spectroscopy. Raman spectra show D, G, and 2D peaks, whose intensities vary on the growth temperature. Atomic force microscopy reveals that the surface is very flat. Sapphire substrates of different cutting direction produce similar results. Simulations suggest that the interaction between carbon and oxygen causes disorders. Electrical transport measurements exhibit a Dirac-like peak, including a carrier type change by an external gate voltage bias.

  • PDF

Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries (이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

Modeling of Solid Particle-Slag Interactions in Entrained Gasification Reactor (분류층 가스화기에서의 고체 입자-슬래그 간 상호 작용에 대한 모델링)

  • Chi, Jun-Hwa;Kim, Ki-Tae;Kim, Sung-Chul;Chung, Jae-Hwa;Ju, Ji-Sun;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.686-698
    • /
    • 2011
  • Mathematical models for char-slag interaction and near-wall particle segregation developed by Montagnaro et. al. were applied to predict various aspects of coal gasification in an up-flow entrained gasifier of commercial scale. For this purpose, some computer simulations were performed using gPROMS as the numerical solver. Typical design parameters and operating conditions of the commercial gasifiers were used as input values for the simulation. Development of a densely dispersed phase of solid carbon was found to have a critical effect on both carbon conversion and ash flow behavior. In general, such a slow-moving phase was turned out to enhance carbon conversion by lengthening the residence time of char or soot particles. Furthermore, it was also found that guiding the transfer of char or soot into the closer part of the wall to coal burner is favorable in terms of gasification efficiency and vitrified ash collection. Finally, to a certain degree densely dispersed phase of carbon showed an yield-enhancing effect of syngas.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.