• Title/Summary/Keyword: Solid carbon

Search Result 983, Processing Time 0.026 seconds

Chemical Reactions in Solid State Complexes of 1,2-Polybutadiene and Palladium Chloride : High Temperature Infrared Study

  • Lee, Joon Y.;Laurence A. Belfiore
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.826-830
    • /
    • 1996
  • Fourier transform infrared (FTIR) temperature studies were performed to examine the microstructural changes that occur in annealing process of the thin films of 1,2-polybutadiene (1,2-PBu)/palladium chloride (PdCl2) complex. The disappearance of the infrared absorption intensities at 1640, 1418, 994 and 910 cm-1 signifies the consumption of 1,2-vinyl groups of 1,2-PBu. The progressive loss of unsaturation and production of methyl groups as a function of temperature were identified by the enhanced infrared absorption intensities at 1447 and 1375 cm-1. The loss of pendent carbon-carbon double bond is considered to involve both palladium-catalyzed addition reaction and thermally induced cyclization.

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Influence of Carbon Content on Superconductivity of $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ HTS

  • Jeon, Yong-Woo;Soh, Dea-Wha;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.276-279
    • /
    • 2002
  • $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ was prepared by the conventional method of solid state reaction and SHS method. The samples were annealed in different atmosphere in order to examine the influence of atmospheres on the carbon contents in the $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ compound. The lowest carbon content in $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ could be attended when the sample was annealed in $O_{2}$ at $800^{\circ}C$ for 100 hours. The $CO_{2}$ in air pollute the samples and increase the carbon content in the sintering process. The critical current density of the $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ samples will decrease with the increasing carbon contents in the samples. The impurity carbon will deposit in the grain boundary, which makes critical current density lower.

  • PDF

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Effects of Carbon and Sulfur Content on Mechanical Properties of High Purity Steel (고순도강의 기계적 성질에 미치는 탄소 및 황 함량의 영향)

  • Yoon, Jeong-Bong;Kim, Sung-Il;Kim, In-Bea
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • To lower the annealing temperature and the deviation of the mechanical properties of bake hardening steels, high purity steels were investigated. The steels were characterized by treating at low recrystallization temperature. It was confirmed that the strengthening originated from the solid solution of carbon and the ferrite grain refinement by fine MnS precipitates as carbon and sulfur contents increased in high purity steels. However, it was observed that there was no more increase of strength in steels containing over 40 ppm of carbon. It was considered that the excess carbon formed either the carbon cluster or the low temperature unstable carbides which had the negligible effect on the strengthening because they were reported to be highly coherent with the matrix. The carbon cluster and unstable carbides could be transformed to the stable cementite during bake hardening treatment. MnS was not observed in the high purity steel containing 5 ppm S, resulting in very coarse recrystallized grains and good ductility. As sulfur content increased, the recrystallized grain size decreased due to the formation of the fine MnS precipitates.

Experimental study on operation of diesel autothermal reformer for SOFC system (SOFC 시스템용 디젤 자열개질기 운전을 위한 기초 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2015-2020
    • /
    • 2007
  • Diesel is an excellent candidate fuel for fuel cell applications due to its high hydrogen density and well-established infrastructure. But, it is hard to guarantee desirable performance of diesel reformer because diesel reforming has several problems such as sulfur poisoning of catalyst and carbon deposition. We have been focusing on diesel autothermal reforming(ATR) for substantial period. It is reported that ATR of diesel has several technical advantages such as relatively high efficiency and fuel conversion compared to steam reforming(SR) and partial oxidation(POX). In this paper, we investigate characteristics of diesel reforming under various ratios of reactants(oxygen to carbon ratio, steam to carbon ratio) for improvement of reforming performances(high reforming efficiency, high fuel conversion, low carbon deposition). We also exhibit calculated heat balance of autothermal reformer at each condition to help thermal management of SOFC system.

  • PDF

A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert (노즐목 적용 탄소/탄소 복합재료의 열반응 특성 연구)

  • Ham Hee-Cheol;Bae Joo-Chan;Hwang Ki-Young;Kang Yoon-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.162-166
    • /
    • 2005
  • A thermal resistance estimation of carbon/carbon composites used as the nozzle throat insert of solid rocket motor was performed using TPEM motor. Three types of TPEM motor and two types of propellant were employed. The ablation rate is higher for the higher chamber pressure and also higher for the higher concentration of oxidizing species in combustion gas, but it is lower for the higher material density.

  • PDF

A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert (노즐목 적용 탄소/탄소 복합재료의 열반응 특성 연구)

  • Ham Hee-Cheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • A thermal resistance estimation of carbon/carbon composites used as the nozzle throat insert of solid rocket motor was performed using TPEM motor. Three types of TPEM motor and two types of propellant were employed. The ablation rate is higher for the higher chamber pressure and also higher for the higher concentration of oxidizing species in combustion gas, but it is lower for the higher material density.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.