• Title/Summary/Keyword: Solid capsule

Search Result 35, Processing Time 0.022 seconds

Comparative Characterization Study on Quality Attributes of Vegetable and Gelatin as Capsule Shell of Soft Capsule (연질캡슐 피막물질로서 식물성 성분 원료와 젤라틴에 대한 품질특성 비교)

  • Kim, Dong Wook;Weon, Kwon Yeon
    • YAKHAK HOEJI
    • /
    • v.59 no.2
    • /
    • pp.70-76
    • /
    • 2015
  • A Softgel is an oral dosage form for medicine similar to capsules and softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound. This study aimed to qualify a proprietary vegetable soft capsule which contains modified starch and carrageenan as capsule shell components compare to the conventional gelatin softgel. Four kinds of samples were prepared with vegetable and gelatin capsule shell, respectively. Morphology of capsule shell, mechanical strength of capsule, and hygroscopic properties were studied for comparing the quality attributes of softgel. Short-term stability against heat and moisture was also investigated in this study. Vegetable capsule shell showed better mechanical strength, physical stability and disintegration time for temperature and humidity than those of conventional gelatin capsule shell with four different filling materials used frequently as soft capsule form. Conclusively, this vegetable capsule shell polymer system can replace easily gelatin-shell systems and additionally allows encapsulation of lipid fills at high temperatures that are semisolid or solid-like at room temperature.

Solid Dispersion of an HIV Protease Inhibitor

  • Park, Jae-Hyeon;Lee, Sung-Hack;Lee, Yong-Hee;Kim, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • LB71350 is an HIV protease inhibitor with poor aqueous solubility and extensive first pass effect. The purpose of the present study was to test the feasibility of solid dosage form of LB71350 with improved bioavailability utilizing solid dispersion. Three different compositions with varying ratio of (LB71350: Gelucire 44/14: Tween 20) were studied. Capsule filling of these solid dispersion compositions was tested using a semi-automatic capsule filling system. Oral bioavailability in dog was tested. Chemical and physical stability at 4, 25 and $40^{\circ}C$ was monitored by HPLC assay, dissolution test, powder XRD and microscopy. The capsule filling system yielded uniform products of drug loading up to 10%. Oral bioavailability in dog was improved compared to the aqueous suspension of crystalline LB71350. Capsules were chemically stable for up to 6 months at $40^{\circ}C$. However, there were temperature and composition dependent physical changes. Decrease in dissolution rates after storage at $40^{\circ}C$ was due to the polymorphic change. In conclusion, manufacturing process, bioavailability, and physico-chemical stability have been considered to propose a solid dispersion capsule formulation for the HIV protease inhibitor with poor physico-chemical properties. A new less soluble crystalline form identified during the physical stability test warrants further study.

Enhancement of Nitrendipine Bioavailability in Rats by its Solid Dispersion with $Hydroxypropyl-{\beta}-Cyclodextrin$ after Oral Administration (흰쥐에 경구 투여시 히드록시프로필-베타-시클로덱스트린과 니트렌디핀 고체분산에 의한 생체이용률 증가)

  • Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.295-301
    • /
    • 1997
  • Nitrendipine, a slightly soluble calcium channel blocking agent forms a solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$, which exhibits better dissolution characteristics than the uncomplexed drug. The dissolution rate of nitrendipine was markedly increased in solid dispersion system in pharmacopeial disintegration media at pH 1.2 and pH 6.8. Four different dosage forms of nitrendipine were administered to rats: (a) nitrendipine in the solution of PEG 400; (b) nitrendipine solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 by solvent evaporation method and administered in capsule form; (c) physical mixture of nitrendipine with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 and administered in capsule form; (d) nitrendipine alone administered in capsule form. Relative bioavailability after the oral administration of various dosage forms to rats with a dose of 10 mg/kg equivalent to nitrendipine was compared with that of nitrendipine in the solution of PEG 400. The AUC of solid dispersion was significantly bigger than that of nitrendipine powder. $T_{max}$ of solid dispersion was significantly shorter and $C_{max}$ was higher than that of nitrendipine powder. These results indicate that the bioavailability of nitrendipine could be improved markedly by inclusion complexation. An interesting correlation also appears to exist between the in vitro dissolution data and the area under the plasma concentration-time curves.

  • PDF

An Analysis of Gravity-Assisted Melting of Subcooled Solid Filled Inside a Spherical Capsule (구형용기내 고상의 하강운동을 고려한 융해과정의 해석)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2601-2610
    • /
    • 1993
  • A numerical study on the melting process inside an isothermal spherical capsule is made. It is assumed that the phase change medium of its solid phase is heavier than the liquid phase and therefore the unmelted solid core is continuously moving downward on account of gravity forces. Such a gravity-assisted melting is commonly characterized by the existence of a thin liquid film below the solid core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow and heat transfer characteristics associated with the gravity-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved without subdivision of the solution domains. For example, the liquid film region and the upper melted region are treated here as one domain and thus obviating laborious efforts to couple them. Numerical results are obtained by varying the Rayleigh numbers and the degree of subcooling. For the range of parameters examined, the presence of subcooling was found to impede the melting rate. The dropping velocity of the unmelted solid core was observed to affect the natural convection in the liquid significantly. When compared with the available experimental data, much improved prediction was achieved.

Mathematical Model for Adsorption of Berberine on Encapsulated Adsorbent (캡슬에 고정화된 흡착제에의 Berberine의 흡착에 관한 수학적 모델)

  • 최정우;조상원이원홍
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • A mathematical model using local thermodynamic equilibrium isotherms for adsorption in encapsulated adsorbent is proposed in order to optimize the design parameters in situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in Thaictrum rugosum plant cell culture. The adsorption rate on encapsulated adsorbent is compared with that on alginate-entrapped adsorbent. The result shows that the higher loading capacity in encapsulated adsorbent is mainly due to the increase in the maximum solid phase concentration. Based on the adsorption rate and loading capacity, the encapsulated adsorbent would be more useful than the entrapped adsorbent when used in situ bioproduct separation process. Design parameters in situ bioproduct separation process, such as the size of the capsule, membrane thickness, the ratio of capsule volume to bulk volume, the ratio of single capsule volume to total capsule volume and the adsorbent content in the capsule, are evaluated by using the model. The ratio of single capsule volume to total capsule volume is the most effective parameter for adsorption of berberine on encapsulated adsorbent.

  • PDF

The Crack Healing Properties of Cement Mortar Materials Using Crystal Growth Type Self-Healing Solid Capsules According to the Crack Induction Age (균열 유도 재령에 따른 결정성장형 자기치유 고상캡슐 활용 시멘트 모르타르의 균열 치유 특성)

  • Choi, Yun-Wang;Nam, Eun-Joon;Kim, Cheol-Gyu;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.475-482
    • /
    • 2020
  • In this study, three levels of solid capsules were prepared according to the composition ratio of core materials for the crystal growth type self-healing solid capsule, and a cement mortar was prepared with the crystal growth type self-healing solid capsule. The prepared solid capsule was mixed with 3% of the cement mass to evaluate the healing properties according to the crack induction age of the cement mortar. As a result of test, the crack healing properties according to the crack induction age of cement mortar mixed of solid capsules, it was confirmed that the self-healing performance of the cement mortar with the solid capsules was increased self-healing performance of 7 days than 28 days. This is because the unhydrated binder remains.

Quality and Long-tern Aged Healing Properties of Self-healing Surface Protection Materials Using Solid Capsules (고상캡슐을 활용한 자기치유 표면보호재의 품질 및 장기재령 치유특성)

  • Oh, Sung-Rok;Nam, Eun-Joon;Kang, Shin-Taeg;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.397-404
    • /
    • 2021
  • In this study, it was reviewed that the effect of solid capsules on the quality of surface repair materials and the healing properties of long-term aging, as part of a study to utilize self-healing surface repair materials using solid capsules as repair materials. As a result of evaluation of the rheological properties of self-healing surface repair materials according to the mixing of solid capsules, plastic viscosity, yield stress, and table flow tended to decrease. In the case of compressive strength, 1MPa per 1% of the solid capsule decreased proportionally. As a result of evaluating the long-term healing properties, when 10% of solid capsules were mixed, a healing rate of 90% was shown at 28 days of healing, because the solid capsule was preserved even after 91 days of age had elapsed. after 91 days of healing, even in the case of 5% of solid capsules, a healing rate of 90% was shown.

An Experimental Study on the Quality and Crack Healing Properties of Self-Healing Mortar Containing Solid Capsules using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.120-128
    • /
    • 2020
  • In this study, solid capsules using crystal growth-type inorganic materials that can be directly mixed with mortar were prepared. Thus, three levels of solid capsules were prepared. The prepared solid capsule was mixed with 3% of the cement mass, was evaluated quality and crack healing properties of the mortar. As a test results of the table flow and air content of the mortar mixed with the solid capsules showed that mix of the solid capsules was no effect on the table flow and air volume. As a test result of the crack healing properties of the mortar mixed with the solid capsule according to water flow test and crack closing test, the initial flow rate was decreased, it was confirmed that the reaction product occurred over time and the cracks were healed.

An Experimental Study on the Self-Healing Performance of Solid Capsules According to the Composition Ratio of Crystal Growth Type Inorganic Materials (결정성장형 무기재료 조성비에 따른 고상 캡슐의 자기치유 성능에 관한 실험적 연구)

  • Nam, Eun-Joon;Oh, Sung-Rok;Kim, Cheol-Gyu;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.16-22
    • /
    • 2021
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction. The solid capsules were mixed at 3, 5, and 10% according to the composition ratio of 8:2, 7:3, 6:4 based on the cement mass, and the self-healing mortar was mixed, Durable healing properties were evaluated through the water permeability test. As a result of the water level permeability test, the effect of optimally improving the natural healing performance was shown by mixing the solid capsules prepared in a composition ratio of 7:3 of the solid capsules. In the case of a crack width of 0.3mm or less, it is estimated that more than 90% of the self-healing performance can be secured. As a result, it was judged that the self-healing performance of the solid capsule had an effect on the durable healing properties through the water permeability test, It is judged that there is a tendency to improve self-healing performance according to the mixing of solid capsules.

Pressure Drop and Vibration Characteristics of the Capsule with the Modification of Bottom Structures (캡슐 하단부 구조변경에 따른 압력강하 및 진동특성)

  • Choi, M.H.;Choo, K.N.;Cho, M.S.;Kim, B.G.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1370-1377
    • /
    • 2005
  • The bottom structure of an instrumented capsule is a part which is joined at the receptacle of the flow tube in the reactor in-core. A geometrical change of the bottom structure has an effect on the pressure drop and the vibration of the capsule. The out-pile test to evaluate the structural integrity of the material capsule called 04M-17U was performed by using a single channel and a half core test loop. From the pressure drop test, the optimized diameter of the cone shape's bottom structure which satisfies HANARO's flow requirement (19.6 kg/s) is 71 mm. The maximum displacement of the capsule measured at the half core test loop is lower than 1.0 mm. From the analysis results, it is found that the test hole will not be interfered with near the flow tubes because its displacement due to the cooling water is very small at 0.072 mm. The fundamental frequency of the capsule under water is 9.64 Hz. It is expected that the resonance between the capsule and the fluid flow due to the cooling water in HANARO's in-core will not occur. Also, the new bottom structure of a solid cone shape with 71 mm in diameter will be applicable to the material and special capsules in the future.