• Title/Summary/Keyword: Solid bed process

Search Result 93, Processing Time 0.023 seconds

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Study on Recycling of Incombustion Materials from MSWI Fluidized Bed Incinerator Ash (생활쓰레기 유동상(流動床) 소각로(燒却爐) 불연물(不燃物)의 재활용에 관한 연구(硏究))

  • Choi, Woo-Zin;Park, Eun-Kyu;Kang, Seung-Kyun
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The total amount of fluidized bed incinerator ash, i.e. incombustion materials generated from the municipal solid waste incineration(MSWI) in Korea was approximately 14,000 tons in 2006. Most of the ash after ferrous metal separation is finally discard to the landfill sites. In the present work, possibility for recycling of the ash is studied to utilize the ash as raw materials for ceramic products. Incombustion materials obtained from the two different incinerators were used to recover the raw materials by applying the magnetic separation and screening process to remove metallic particles. The raw materials show relatively low heavy metals content obtained from the KSLP leaching tests. The ceramic products were prepared by mixing the clay with the various amounts of the raw material. The physical properties, i.e. shrinkage rate, absorbancy and compressive strength of the ceramic products sintered at $1,000^{\circ}C$ and $1,050^{\circ}C$, respectively were improved by increasing the addition amounts of the incinerator ash. Based on the leaching tests the ceramic products also be satisfied with the standard limits on the leachability of heavy metals because most of the metallic materials are effectively removed from the incombustion materials by appling the separation processes.

Effect of Support on Synthesis Gas Production of Supported Ni Catalysts (니켈 담지촉매를 이용한 합성가스 제조 시 담체의 영향)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2003
  • Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Study of CO2 Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor (회분식 기포유동층 반응기에서 K-계열 건식흡수제의 주입수분농도 및 재생반응온도에 따른 CO2 흡수-재생 반응특성 연구)

  • Park, Keun-Woo;Park, Yeong Seong;Park, Young Cheol;Jo, Sung-Ho;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.349-354
    • /
    • 2009
  • In this study, a bubbling fluidized-bed reactor was used to study $CO_2$ capture from flue gas using a potassium-based dry sorbent. A dry sorbent, manufactured by the Korea Electric Power Research Institute, consists of 35% of $K_2CO_3$ for $CO_2$ absorption and 65% of supporters for mechanical strength. $H_2O$, a reactant of the carbonation reaction, was supplied in the reactor as a form of saturated water vapor at a given temperature. The experiment of the regeneration reaction was performed by raising up to a given temperature using $N_2$ as a fluidization gas. It was indicated that sorption capacity and regenerability of dry sorbents showed high-efficiency at $1.97\;mol\;H_2O/mol\;CO_2$ and $400^{\circ}C$, respectively. The regenerated sorbent samples were analyzed by TGA to confirm the extent of the reaction. When the regeneration temperature was $150^{\circ}C$, the regenerability of dry sorbents was about 60%, which was capable of applying those sorbents to a two-interconnected fluidized-bed reactor system with continuous solid circulation. The results obtained in this study can be used as basic data for designing and operating a large scale $CO_2$ capture process with two fluidized-bed reactors.

Development and Application of Convergence Process with Solid-Liquid Separation and Membrane for Wastewater Treatment and Reuse (초고속 고액분리 시스템과 분리막을 이용한 농업용수 재이용 수처리시스템 개발 및 현장적용)

  • Choi, Sunhwa;Kim, Haedo;Jang, Kyusang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.591-591
    • /
    • 2016
  • 최근에는 재이용을 위한 하 폐수의 처리 공정에 막을 이용한 기술적용이 증가되고 있는 추세이다(현 등, 2005). 막(membrane)을 이용한 수처리 공정은 원수에 상관없이 고도처리가 가능하며, 재이용수 이용 용도에 따른 수질제어가 가능할 뿐만 아니라 운용의 편리성 때문에 많은 각광을 받고 있다(박 등, 2004). 본 연구에서는 하수처리에 이용되는 분리막의 성능을 극대화하고, 분리막의 오염부하를 줄여주기 위하여 분리막 직전 전처리 시설로 부상방식의 고액분리장치를 개발하였다. 초고속 고액분리시스템은 기존의 응집부상공정을 응용한 기술로서 유기물의 응집시간을 최대 10초~2분 이내로 줄이는 기술을 바탕으로 타워형 모듈 형태로 개발하였다. 초고속 고액분리시스템과 분리막을 연계한 재이용수 수처리시스템의 성능 평가 및 현장적용을 위해 제주도 서부 하수 처리장에 일 $3,000m^3$ 규모의 Test-bed를 구축하였다. 구축된 하수재이용시스템의 처리 공정도는 "유입${\rightarrow}$고액분리시스템${\rightarrow}$분리막(UF, RO)${\rightarrow}$농경지 공급"으로 구성되어 있다. 먼저 하수처리장 방류수를 1차 유입조에 압송하면 전처리시설인 고액분리시스템을 통해 SS 등 입자성 물질이 처리되고, 다음 공정인 2차 처리공정(UF/RO)을 통과한 처리수는 인근지역의 농업용수로 공급되고 있다. 고액분리시스템은 ZT(Zeta Potential Tower) 모듈에서 유입수에 함유되어 있는 부유물질(SS), 유기물(질소, 인)을 응집제와 순간 반응시켜 응결, 응집, 부상방식으로 제거하는 공정이다. 고속 고액분리장치는 분리막 공정과 융 복합하여 다양한 유입수 성상에 따른 수처리를 가능하게 하여 재이용수 수질 향상뿐만 아니라 안정된 수자원 확보 측면에서 긍정적인 기술로 평가되었다.

  • PDF

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity (제올라이트 13X에 의한 배가스 성분의 흡착 특성 및 불순물의 영향)

  • Suh, Sung-Sup;Lee, Ho-Jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.838-846
    • /
    • 2016
  • Most of combustion processess used in industries require recovering or removing flue gas components. Recently a new MBA (moving bed adsorption) process for recovering $CO_2$ using zeolite 13X was developed. In this study, adsorption experiments for carbon dioxide, nitrogen, sulfur dioxide, and water vapor on zeolite 13X were carried out. Adsorption equilibrium and adsorption rate into solid particle were investigated. Langmuir, Toth, and Freundlich isotherm parameters were calculated from the experiment data at various temperatures. Experimental results were consistent with the theoretically predicted values. Also $CO_2$ adsorption amount was measured under the conditions with impurities such as $SO_2$ and $H_2O$. Binary adsorption data were well fitted to the extended Langmuir isotherm using parameters obtained from pure component experiment. However, $H_2O$ impurity less than, roughly, ${\sim}10^{-5}H_2O\;mol/g$ zeolite 13X enhanced slightly $CO_2$ adsorption. Spherical particle diffusion model well described experimentally measured adsorption rate. Diffusion coefficients and activation energies of $CO_2$, $SO_2$, $N_2$, $H_2O$ were obtained. Diffusion coefficients of $CO_2$ and $SO_2$ decreased with small amount of preadsorbed impurity. Parameter values from this study will be helpful to design of real commercial adsorption process.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Evaluation of Denitrification Efficiency by Sulfur Denitrification Process according to Injection Type (유입방식 변화에 따른 황 탈질조의 탈질효율 평가)

  • Yoo, Tae-Kyoung;Choi, Yong-Bum;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.262-269
    • /
    • 2016
  • This study examined the influent of a sulfur denitrification reactor using nitrified effluent from a batch type reactor. The denitrification efficiency was compared according to the injection type. The nitrogen removal effects were compared with the changes in the EBCT and nitrogen concentration of the influent to determine the optimal operation conditions with the selected injection type. A denitrification efficiency evaluation of a reactor according to the change in injection type and up-flow was performed using a lower organic concentration of the effluent than the down-flow because of the re-precipitation of desorbed microbes and spilled solids. In the up-flow type, organics were controlled by the low concentration than the down-flow type because of solid re-precipitation. The T-N removal efficiency of the up-flow type was 73.3~90.2%, which was more that 10% higher that down-flow type. This means that the up-flow type has a great advantage in removing T-N and organics. The T-N removal efficiency by EBCT at 1hr was 47.3%, and was 88.1% and 90.5% by EBCT 3hr and 5hr, respectively. Therefore, the optimal operation conditions to remove nitrogen was considered to be EBCT for 3hr. After careful consideration of rule of law and T-N removal effects, the T-N load factor in the reactor should remain below $0.443kgT-N/m^3{\cdot}day$ to maintain the legal total nitrogen concentration for discharge, which is 20mg/L.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.