• Title/Summary/Keyword: Solid Surface

Search Result 2,428, Processing Time 0.023 seconds

Surface discharge Characteristics for solid dielectric under non-uniform field (불평등전계 하의 고체절연물 연면방전특성)

  • Park, He-Rie;Lee, Jung-Hwan;Choi, Eun-Hyuck;Park, Sung-Gyu;Kim, Lee-Kook;Kim, Ki-Chae;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.270-272
    • /
    • 2009
  • This paper presents a basic data of the surface discharge characteristics for solid dielectric under non-uniform field in $N_2/O_2$ mixture gas. Used electrodes are needle and plane. Used solid dielectric is expoxy resin. With the variation of the mixture rates of the gas by 80[%]:20[%], 60[%]:40[%] and 40[%]:60[%] in same condition, we can obtain different surface dielectric strength. Increased Pressure and thickness caused increased surface dielectric strength.

  • PDF

A Theoretical and Experimental Study of Physical Adsorption of Gases on Uniform Flat Solid Surface

  • Lee, Jo-Woong;Chang, Sei-Hun;Yoon, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1989
  • In this work we have experimentally observed the physisorption isotherms for nitrogen, TMS, cyclohexane, benzene, and n-hexane adsorbed on flat aluminum foil surface and have analyzed them theoretically on the basis of the theory proposed by Chang et al. The results show that the theory by Chang et al. can provide a useful means to describe the physisorption of gases on uniform flat solid surface which is essentially important for analysis of the pore volume distribution in porous solid surface. We have also discussed the application of the results obtained in this work to the analysis of pore volume distribution in porous alumina we reported previously.

A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion (고체입자 충돌침식으로 인한 배관 재질의 손상에 관한 연구)

  • Kim, Kyung-Hoon;Choi, Duk-Hyun;Kim, Hyung-Joon
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.130-138
    • /
    • 2014
  • Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor-based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

A Study on the Mechanical Properties of Surface Activated Waste EPDM and The Analysis of Odor Materials (표면 활성화된 폐 EPDM 분말의 물성과 냄새 성분 분석 연구)

  • Choi, J.;Kim, S.;Chung, K.;Chung, J.;Yoo, T.;Yang, J.
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.249-258
    • /
    • 2007
  • In this study, the EPDM powder which was surface activated by high temperature and shear pulverization process was prepared and the mechanical properties and odor material analysis were investigated. Analysis for particle size and size distribution of waste of the EPDM powder has been performed. The waste EPDMs used in this study were 4 types of solid, sponge, solid+sponge, and solid+metal. According to the results, the solid type showed the smallest particle size among the 4 types of EPDM powder. Effective surface devulcanization of EPDM powder could be obtained by the addition of the reclaiming agent. The dicumyl peroxide was considered as the best crosslink agent for dynamic vulcanization when the surface activated EPDM powder was blended with polyolefin in order to make TPE. Also, the optimum amounts of DCP was 6 phr in terms of surface crosslink reaction and mechanical properties of EPDM powder. The processes of water adsorption and rose oil addition were employed to remove the odor of EPDM powder caused by reclaiming agent. The GC/MS was used to analyze the odor compounds.

Study on Properties of Interior Ballistics According to Solid Propellant Grain Configuration (고체추진제 형상에 따른 강내탄도의 특성 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Kim, In-Joo;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.159-162
    • /
    • 2009
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the configuration of the solid propellant has been investigated. In existing research, only ball type solid propellant is considered but at this research, cylinder and single slot type solid propellants are considered. Definite the change of performance of the interior ballistics according to specific surface area.

  • PDF

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

A Study on the 3-Dimensional Modeling of Spur Gear Using VisualLISP (VisualLISP을 이용한 스퍼기어의 3차원 모델링에 관한 연구)

  • 이승수;김민주;김래호;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • This paper describes the development of automatic shape design program for spur gear. It produces automatically third-dimensional surface and solid model used in CAD/CAM system with inputting simple measurements. This program can maximize user's convenience and get surface and solid model quickly as accepting GUI(graphic user interface). Automatic shape design program for spur gear was developed by Visual LISP, a developer program. Besides, a geometrical method and a mathematical algerian are used in this program. Use frequency of a fine spur gear is on the increase recently and manufacture process of this gear is heat treatment after press processing with molding. In this press processing, the upper punch portion of a fine spur gear shape is drafted by CAM. Therefore, estimated that surface and solid model of spur gear used to CAM are needed in this research. In this research, after 2 ㎜ gear was modeled by auto shape design program, the upper punch portion of a fine spur gear was manufactured as giving third-dimensional model to CAM software and then, displayed the result as applying to press process.

A Study of Horizontal Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials of Solid Insulator in Quasi-Uniform Field (Dry Air 중의 준평등전계에서 노점과 고체절연물 재질에 따른 수평연면방전 특성 연구)

  • Kang, Byoung-Chil;Seok, Jeong-Hoo;Min, Gyeong-Jun;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • This study investigates the Horizontal surface discharge characteristics of solid insulators by varying their materials, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polyethlene and polyurethane. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polyethlene is higher than that of polyurethane. Moreover, it is observed that the flashover voltage increases as the horizontal distance between the electrodes of each solid insulator become larger, respectively. However, as the pressure is increased, flashover voltage of the solid insulators is saturated. Therefore, selection of cost-effective insulation is needed in order to appropriate pressure.

A Study of Surface Discharge Characteristics for Dew-Point of Dry-Air and Materials or Shapes of Solid Insulator in Quasi-Uniform Field (준평등전계에서의 Dry-Air 노점과 고체절연물 재질 및 형상에 따른 연면방전 특성 연구)

  • Min, Gyeong-Jun;Kang, Byoung-Chil;Lim, Dong-Young;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • This study investigates the surface discharge characteristics of solid insulators by varying their materials, their shapes, and the dew-point of dry-air. The methodology of this study is that a quasi-uniform field is first applied to a test chamber. Then, the chamber is filled with dry-air as an insulation gas which pressure is varied from 1 to 6atm while applying an AC voltage to the chamber. The used solid insulators are teflon, polycarbonate, and bakelite. As the dew-point is lower and the pressure of dry-air is higher, the flashover voltage of all solid insulators increases more. When each characteristic of the solid insulators is compared under the same gas pressure, the flashover voltage of teflon is the highest. Then, the flashover voltage of polycarbonate is higher than that of bakelite. Moreover, it is observed that the flashover voltage increases as the diameter and the thickness of each solid insulator become larger and thicker, respectively. However, the thickness of the solid insulators is more critical for increasing the flashover voltage than their diameter.