• Title/Summary/Keyword: Solid Surface

Search Result 2,428, Processing Time 0.029 seconds

Analysis of Ion Beam-Solid Interactions for Nano Fabrication (나노 패터닝을 위한 이온빔-고체 상호작용 분석)

  • Kim H.B.;Hobler G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.581-584
    • /
    • 2005
  • Ion beam processing is one of the key technologies to realize mastless and resistless sub 50nm nano fabrication. Unwanted effects, however, may occur since an energetic ion can interact with a target surface in various ways. Depending on the ion energy, the interaction can be swelling, deposition, sputtering, re-deposition, implantation, damage, backscattering and nuclear reaction. Sputtering is the fundamental mechanisms in ion beam induced direct patterning. Re-deposition and backscattering are unwanted mechanisms to avoid. Therefore understanding of ion beam-solid interaction should be advanced for further ion beam related research. In this paper we simulate some important interaction mechanisms between energetic incident ions and solid surfaces and the results are compared with experimental data. The simulation results are agreed well with experimental data.

  • PDF

Comparative study on microbial degradation characteristics of liquid and solid n-alkanes by Acinetobacter sp. (Acinetobacter sp. 에 의한 액체, 고체 알칸의 미생물 분해특성 비교연구)

  • Dong-Hyuk CHOI
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.95-104
    • /
    • 1999
  • Comparative biodegradation studies of liquid and solid alkanes and of two different solid alkanes were conducted by an isolated Acinetobacter sp., which degraded crude oil alkanes simultaneously. for the determination of degradation mechanism of hydrophobic crude oil constituents. Also a model oil experimental system composed of a solid alkane. heneicosane, as a substrate and a non-degradable non-aqueous phase liquid. pristane, as an oil matrix was established and studied. It was proposed that the Acinefobacter sp. utilized hydrophobic substrates directly on the surface of them with no difference in the degradation rates between the liquid and solid alkanes. On the basis of the results from the heneicosane/pristane system which imitates crude oil matrix containing solid constituents. the crude oil matrix was considered to reduce the bioavailability of contained substrates by reducing the specific surface area of substrates to contact with microorganisms.

  • PDF

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Nano-Scale Immobilization of Antibody for the Construction of Immunosensor

  • Cho, Il-Hoon;Paek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.701-705
    • /
    • 2003
  • Performance of an immunosensor can usually be assessed in terms of its analytical sensitivity and specificity. Sensitivity, i.e., the detection limit of analyte, is particularly determined by the amount of analyte molecules bound to the capture antibody immobilized onto a solid surface. In order to increase the binding complexes, we have investigated an immobilization method of antibody allowing for a molecular arrangement of the protein on a selective surface of a nano-patterned solid substrate. This has not been accomplished only by a surface treatment with a chemical, but also by fragmentation of immunoglobulin. Such approach would offer a protocol of antibody immobilization for the construction of nano-immunosensor and eventually improve the sensitivity of detection.

  • PDF

The Effects of Surface Functional Groups to Protein Adsorption (단백질흡착에 있어서 표면작용기의 영향)

  • 하기성
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.318-324
    • /
    • 1992
  • The adsorption characteristics of bovine serum albumin(BSA) on the modified carbon fiber and cellulose surfaces were investigated. In order to define the effects of solid surface characteristics on protein adsorption, surfaces of carbon fiber and cellulose were modified by physical and chemical treatment. The amounts of BSA adsorbed onto various solid surfaces were evaluated by batch method under various pH and ionic strength. The amount of adsorbed BSA was highly dependent on pH as well as surface functional groups.

  • PDF

A Study on Wettability and Defects Behavior of Flow-soldered Joint using Low Residue Flux (저잔사 플럭스를 사용한 플로우 솔더링부의 젖음성 및 결함거동에 관한 연구)

  • 최명기;이창열;정재필;서창제;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 1998
  • Effects of non-cleaning and cleaning fluxes on the wetting properties and defects at flow soldered joints were investigated. Non-cleaning flux (R-type of 3.3% solid content) and cleaning flux (RMA-type of 15% solid content) were used. Wetting test was accomplished by wetting balance method with changing surface state of wetting specimen, CU. Sn-37%Pb solder was used for wetting test and flow soldering. As experimental results, the wetting time for vertical force from the surface tension being zero was mainly affected by surface state of the wetting specimen. Non-cleaning flux had a good wettability compared with cleaning flux. In case of non-cleaning flux, conveyor speed had a great affection to defects of bridge, icicle, and poor solder.

  • PDF

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

Structural Characteristics of Fatty Acid Thin films (지방산계 박막의 구조 특성)

  • Jung, You-Ra;Choi, Yong-Sung;Hwang, Yong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.33-36
    • /
    • 2009
  • In this paper, evaluation of physical properties was made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of fatty acid monomolecular Arachidic Acid, Stearic Acid using compressing velocity. LB(Langmuir-Blodgett) thin films were manufacture by detecting deposition for the accumulation and the current was measured after the electric bias was applied across the manufactured MIM device. The physicochemical properties of the fatty acid monomolecular Arachidic Acid, Stearic Acid films surface structure has been studied by AFM. We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is gas state, liquid state, solid state. Formation that prevent when gas phase state and liquid phase state measure but could know organic matter that molecules form equal and stable film when molecules were not distributed evenly, and accumulated in solid state only.

  • PDF

Visualization of Elastic Waves Propagating on a Solid Surface with Fatigue Cracks by Laser Ultrasonic Technology

  • Imade, Masaaki;Miyauchi, Hidekazu;Okada, Saburo;Yamamoto, Shigeyuki;Takatsubo, Jyunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.4-109
    • /
    • 2001
  • We have developed a laser ultrasonic system for visualization of elastic waves propagating on a solid surface, in order to visualize ultrasonic waves propagating on opaque media. This system can produce a series of successive images as an animation of wave propagation, because of scanning an optical heterodyne probe to measure surface transient displacements. Using this visualization technique, we observed the scattering and diffraction of ultrasonic waves around various shapes of artificial defects, and examined its application to nondestructive inspection. This imaging system provides various kinds of visualization images such as propagation image, amplitude image, arrival time image and velocity image. We have been confident that this technique is available for nondestructive inspection and materials ...

  • PDF