• Title/Summary/Keyword: Solid Shaft

Search Result 68, Processing Time 0.023 seconds

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Kim, Sung-Jin;Min, Je-Hong;Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.334-341
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used fer Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Viscoelastic Modeling of Automotive Bushing for Axial Mode (축방향 모드에 대한 자동차 부싱의 점탄성 모델링)

  • Lee, Seong-Beom;Lee, Su-Young
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.228-233
    • /
    • 2004
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. Since a force-displacement relation for bushings is important for multibody dynamics numerical simulations, the relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from experiment. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming (로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성)

  • Lim Seong-Joo;Lee Nak-Kyu;Lee Chi-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.

Experimental study on vacuum preloading with flocculation for solid-liquid separation in waste slurry

  • Wu, Yajun;Kong, Gangqiang;Lu, Yitian;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.319-331
    • /
    • 2017
  • This vacuum preloading combined with polyacrylamide (PAM) flocculation was proposed to separating solid-liquid in waste slurry and to improving bearing capacity of soft soil ground. By using waste slurry taken from drilled shaft construction site in Shanghai, China, a series of settling column tests with four typical flocculants and one normal for waste slurry were carried out for comparative analysis. The optimal amounts for each flocculant were obtained from the column tests. Then, model tests on vacuum preloading with anionic polyacrylamide (APAM) flocculation and without flocculants were carried out. The out of water and the settlement of slurry surface ground were monitored during the model tests, and the changes in water content, particle-size and pore-size distributions in different positions after the model tests were measured and discussed. It is found that water content of the waste slurry without APAM flocculation changed from 204 to 195% by 24 hours standing and 15 hours vacuum preloading, while the water content of the waste slurry with APAM flocculation was declined from 163 to 96% by 24 hours standing, and was further reduced into 37% by 136 hours vacuum preloading, which shows that the combined method is feasible and effective.

Experimental Investigation of the Development of a Rotor Type Slurry Pump (로터형 슬러리 펌프 개발을 위한 실험적 연구)

  • Park, Sang-Kyoo;Yun, Jae-Geun;Yangr, Hei-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • The objective of this study was to develop an advanced pump technology using tornado and axial pumping principles without priming water. The developed rotor type slurry pump consisted of an electric motor, driving shaft and coupling, a rotor, an impeller, suction and discharge pipes. For the clean water test, the experimental results are presented for the discharge flowrate, electric power input and vacuum pressure with the rotor design parameters as a function of the motor rpm. The slurry discharge characteristics with the solid concentration of the cement slurry was performed. As the rotor diameter and height increase, the discharge flowrate and electric power input increase while the vacuum pressure in the suction pipe decreases. The rotor thickness had no significant effect on the discharge flowrate and electric power input. Slurries with more than 18 % solid concentration, which is the development factor, can be pumped.

Arrangement for drive shaft design (구동축에 대한 소고)

  • 정진영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 1981
  • 재래적 자동차의 구동계통은 동력원 즉 engine이 앞에 위치하고 뒤에서 미는 순서로 되어 있다. 그러므로 engine 과 차축을 연결하는 이 축(또는 구동계통)은 engine으로 부터의 힘을 차축으로 전달하는 역할을 하며 기본적으로 비틀상태의 반성부재로서 비교적 큰 회전 insertia를 받게 된다. 구동축은 한 개 또는 그 이상의 universal joint와 solid 상태 또는 관으로 된 축으로 조립 되어 있다. 그리하여 축방향의 동작을 통해서 토오크를 전달하고 일정한 각도 또는 변화되는 각도에서 회전운동을 한다. 차축은 차체 spring을 통해서 부쳐져 있으므로 주행중 구동축은 축 방향의 길이의 변화가 있게 되며 따라서 연결돤 각동작이 일어나며 이를 위해서는 universal joint가 필요하게 되며 따라서 전륜구동차에서도 필요하다. 자동차에 적용되고 있는 구동적에는 두가지 기본형이 있는데 torque tube형 구동방법과 hotchkiss형(또는 open driveline형) 구동방 법이다. Torque tube형 구동방식은 근래에는 사라져 가고 있는데 그 주요원인은 구동계통에서 발생되는 소음이 튜브를 통해 증축 전달되며 수리비용이 비교적 큰 때문이다. 이에 비해 open driveline형의 이점은 제조원가가 낮고, 용이하게 제조할 수 있으며, 종량이 경강되며 장착하기 에도 용이한 점들이다.

  • PDF

Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material with external magnetic field

  • Hussein, Nahed S.;Bayones, F.S.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.135-148
    • /
    • 2015
  • The present investigation is concerned with a study effect of magnetic field and non-homogenous on the elastic stresses in rotating orthotropic infinite circular cylinder. A certain boundary conditions closed form stress fields solutions are obtained for rotating orthotropic cylinder under initial magnetic field with constant thickness for three cases: (1) Solid cylinder, (2) Cylinder with a circular hole at the center, (3) Cylinder mounted on a circular rigid shaft. Analytical expressions for the components of the displacement and stress fields in different cases are obtained. The effect of rotation and magnetic field and non-homogeneity on the displacement and stress fields are studied. Numerical results are illustrated graphically for each case. The effects of rotating and magnetic field and non-homogeneity are discussed.

Manufacturing and test of magnetic bearings with HTS bulks (HTS 벌크를 이용한 자기 베어링의 제작 및 특성 시험)

  • Lim, Hyoung-Woo;Sim, Jung-Wook;Cha, Guee-Soo;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.733-735
    • /
    • 2001
  • The high temperature superconducting bulk can be used as the bearing of a motor. This paper presents the fabrication and test results of a motor with superconducting bearing using HTS bulks. The bearing used four hexahedron type YBCO bulks. Height, width and depth of the HTS bulk were 10mm, 30mm and 30mm, respectively. Single phase induction motor was used to drive the shaft and solid rotor was adopted for high speed rotation. Test results show the motor with HTS magnetic bearing can rotate silently and smoothly without any contact.

  • PDF