• Title/Summary/Keyword: Solid Modeler

Search Result 51, Processing Time 0.025 seconds

Development of smart CAD/CAM system for machining center based on B-Rep solid modeling techniques(l) (A study on the B-Rep solid modeler using half edge data structure) (B-Rep 솔리드모델을 이용한 머시닝센터용 CAD/CAM시스템 개발(I))

  • Yang, Hee-Goo;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.150-157
    • /
    • 1996
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interfer- ence check between solids, the structural design of machine tools and robots and so on.

  • PDF

Development of Smart CAD/CAM System for Machining Center Based on B-Rep Solid Modeling Techniques (I) (A Study on the B-Rep Solid Modeler using Half Edge Data Structure) (B-Rep 솔리드모델을 이용한 머시닝 센터용 CAC/CAM 시스템 개발(1): 반모서리 자료구조의 B-Rep 솔리드모델러에 관한 연구)

  • 양희구;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.689-694
    • /
    • 1994
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interference check between solids, the structural design of machine tools and robots and so on.

  • PDF

Geometric Modeling of Electrodes for Injection Mold based on a Solid Modeler (솔리드 모델러를 기반으로 한 사출 금형용 전극 형상의 모델링)

  • 이철수;박광렬;이태경
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • Electrical discharge machining(EDM) is an important process of machining the injection mold. This paper includes efficient design processes of electrodes for EDM. Based on the solid modeler, electrodes can be created by boolean and offset operations with core/cavity models. The built-in offset operations of the solid modeler may occur unexpected results due to the limitations of the solid modeler. We proposed the multi-step and moving-face offset processes in order to apply the EDM clearances. The proposed design processes are implemented with Unigraphics Vl5 API functions and C language and tested on Windows NT 4.0.

  • PDF

Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler (상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측)

  • 이재종;박찬훈;최종근;박홍석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.197-200
    • /
    • 1997
  • In the metal cutting, machining accuracies had affected by tool deflection that had been generated by acting cutting force on the cutting edges. Generally, the CAD/CAM and a solid modeler had used for the simulation of cutting process only. Some NC codes for metal cutting have been generated by these simulation results. But, machining errors that had generated by the tool deflection has not solved using these system. In this study, determination algorithm for integration zone has been studied using the commercial solid modeler. The tool deflection error has calculated by the integration zone between the small chip and the cutting edges.

  • PDF

Design of Web Based Solid Modeler (웹 기반 솔리드 모델러의 설계)

  • Yoon, Bo-yul;Kim, Eung-kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.233-240
    • /
    • 2000
  • We designed a 3D solid modeler based on the web, which was independent from platforms, which could be executed without 3D graphics softwares. In this paper, we show the design of system libraries and how to implement in Java 3D. A client connects to the solid modeler server, design solid model, stores the data as the various file format, and displays the data from other CAD systems. This solid modeler can support the detail design as 3D graphics features such as viewing, rendering, animating are available.

  • PDF

Development of a Solid Modeler for Web-based Collaborative CAD System (웹 기반 협동CAD시스템의 솔리드 모델러 개발)

  • 김응곤;윤보열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.747-754
    • /
    • 2002
  • We propose a Web-based collaborative CAD system which is independent from any platforms, and develop a 3D solid modeler in the system. We developed a new prototype of 3D solid modeler based on the web using Java 3D API, which could be executed without any 3D graphics software and worked collaboratively interacting with each user. The modeler can create primitive objects and get various 3D objects by using loader. The interactive control is available to manipulate-objects such as picking, translating, rotating, zooming. Users connect to this solid modeler and they can create 3D objects and modify them as they want. When this solid modeler is imported to collaborative design system, it will be proved its real worth in today's CAD system. Moreover, if we improve this solid modeler adding to the 3D graphic features such as rendering and animation, it will be able to support more detail design and effect view.

Classificiation of Boundary Information for Non-manifold B-rep Solid Modeler (복합다양체 솔리드 표현을 위한 경계정보의 분류)

  • 최국헌;한순홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • Existing data structures for non-manifold solid modelers use basic dat entities, such as vertex, edge, loop, face, shell, and region to find adjacency relationships. But, no one clearly identified what additional types of data entitles are necessary to represent incidence relationships. In this paper, we classified the boundary information of vertex, edge, face , and region from the 3-D space view. As the results we can clearly define the boundary information required for adjacency relationships. The existing B-rep data structures for solid modeler are compared whether they have the required boundary information.

  • PDF

Automatic 3-D Modeling System for Cooling Fans Based on a Solid Modeler (솔리드 모델러 기반의 냉각탑용 축류팬 자동 설계시스템)

  • 이광일;강재관;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents design automation system using API and parametric modeling of solid modeler, which is applied on axial fans for cooling towers. The design data including chord length and twist angle according to the fan length are given by design program, and API functions are applied to automate the modeling and assembly process of fan blade. The boss to connect fan and motor is designed with parametric design function provided by UG so as to be flexibly changed by the value of design parameters. The process of generating 2-D drafting for parts and an assembly is also automated. With developed system, the modeling time is reduced to 5 minutes even with unskilled operators.

  • PDF

Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler (상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측)

  • ;;;H. S. Park
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.347-350
    • /
    • 2003
  • Many researches on the prediction of cutting forces of ball-end mil is have been achieved since before several decades ago. These kinds of researches have been concentrated on the study on how to make the prediction equations for the cutting forces based on 2-D cutting experimentation. The results of them were really good and impressive. But it's not proper to practical uses for industrial fields, because if sculptured surface were to be machined, then it would be very difficult to understand the complicated kinematical interaction between the sculptured surface and the flutes of a ball-end mill. So, we propose the method for solving these kind of problems using existed commercial CAD/CAM software; Unigraphics. Furthermore, the modification of tool path which is done off line is offered to increase the precision of cutting.

  • PDF

An Automated Design System for Ball-joint Parts of Automobiles (솔리드 모델러 기반의 볼 조인트 부품설계 자동화 시스템)

  • Kang, Jae-Gwan;Lee, Gwang-Il
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.138-143
    • /
    • 2003
  • In this paper, an automated design system for ball-joint parts based on 3-D solid modeler is developed. Parametric modeling and API provided by 3-D solid modeler is engaged to develope the system which consists of four main modules such as : 3-D part modeling, parts assembling, 2-D drafting, and database interfacing modules. The automated design system is implemented on a computer, and shows us that it shorten the design processing time which have taken over 5 hours to only few minutes.