• 제목/요약/키워드: Solid Mass Fraction in Suspension

검색결과 3건 처리시간 0.021초

침전이 수반되는 케이크 여과 II: 새로운 분석과 케이크에 도입되는 현탁액의 고체 질량분율 (Filtration with Sedimentation II: New Analysis and Solid Mass Fraction of Suspension Entering Cake)

  • 임성삼
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.535-544
    • /
    • 2012
  • 수평 여과매체를 사용한 케이크 여과에서는 침전이 수반된다. 이 침전 현상을 고려하지 않을 경우 여과기간의 케이크 평균비저항 값이 두 배 이상까지도 잘못 측정될 수 있다. 저자의 전번 논문에서는 여과기간에 침전으로 인해 케이크에 들어가는 현탁액의 고체분율이 변화한다는 것을 이론적으로 주장하였으나, 그 변화가 어느 정도인지를 알아내지 못하였다. 이 논문에서는 먼저 여과-투과 실험방법에 대한 분석에서 투과기간에 측정된 케이크 평균비저항 값이 옳다는 것을 여러 방법으로 증명하고, 여과기간에 통상적인 방법으로 측정된 평균비저항 값은 여과가 진행되는 순간의 현탁액의 고체분율 대신 초기 고체분율을 사용하므로 정확하지 못하다는 것을 입증하였다. 여과와 투과에서 측정된 실험값을 사용하여, 여과 진행 동안 침전에 의해 변화한 현탁액의 고체분율을 계산하였다. 그 후 여과 진행 동안 측정한 현탁액의 높이 변화 값과 이 논문에서 새로 만든 수식을 사용하여 여과 진행 중의 현탁액 고체분율을 결정하였다. 두 가지 방법으로 결정된 현탁액의 고체분율을 비교하여 두 가지가 거의 일치함을 입증하였다.

고체분말이 부상된 이상난류 관유동의 해석 (Analysis of two phase thrbulent flow in pipe with suspension of solid particles)

  • 최영돈;정명균
    • 대한기계학회논문집
    • /
    • 제5권3호
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.