• 제목/요약/키워드: Solid Fuels

검색결과 163건 처리시간 0.026초

반 실험적 방법을 통한 고체 램 제트 성능에 대한 흡입 공기 온도의 영향 (Inlet Air Temperature Effect on the Performance Efficiency of the Solid Fuel Ramjet through Semi-empirical Method)

  • 이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.29-33
    • /
    • 2005
  • 고체 램 제트 추진기관에서도 일반 로켓 추진기관에서와 같이 Isp 즉 추력을 증대 시키기 위하여 고체 입자들을 연료에 함유시킨다. 이러한 고체입자가 포함된 연료들은 매우 짧은 연소실 체류시간 때문에 연소 효율의 증대가 필수적이며 흡입공기 온도가 중요한 역할을 한다. 이 흡입공기 온도가 램 제트 성능에 미치는 영향을 조사하였다 성능조사는 실험적 방법에 한계가 있어 연소실험을 통한 연소효율을 이용하여 반-실험적으로 조사하였다. 연소실 흡입공기 온도에 영향을 미치는 인자는 자유 유동장 즉 대기 온도와 비행 마하 수이며 이들에 대한 효과를 조사하였다.

  • PDF

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

연소실 및 추진제 변화에 따른 고체로켓 모터의 L* 불안정에 관한 연구 (Effect of Combustors and Propellant Parameters on the L* Instability of Solid Rocket Motors)

  • 이동희;류승현;주성민;김준성;문희장;성홍계;양준서
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.30-35
    • /
    • 2015
  • In this paper, a theoretical study of low frequency non acoustic instability, the $L^*$ instability, of a solid rocket motor is investigated. The $L^*$ stability criterion is determined by analysing the $L^*$ stability curves of two very distinct propellants for five different geometrical combustors. The $L^*$ instability of two extreme fuels showed totally different behavior in terms of operating pressure of the combustor. A parametric study on the stability for different chamber volume and different throat area keeping constant $L^*$ is conducted and analyzed. It was found that one of the main parameters, the non-dimensional critical characteristic time, requires an enough margin from the critical $L^*$ stability curve.

에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가 (Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment)

  • 김희태;김은철;안태규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

산소/이산화탄소 농도 변화에 따른 석탄과 폐기물 연료의 순산소 연소 특성 (Oxy-combustion Characteristics of Coal and Waste Fuels with the Concentrations of Oxygen and Carbon Dioxide)

  • 강신욱;박정민;이상섭
    • 한국대기환경학회지
    • /
    • 제33권5호
    • /
    • pp.473-479
    • /
    • 2017
  • This study was designed to understand characteristics of oxy-combustion of coal, dried sewage sludge and solid refuse fuel (SRF). Thermogravimetric analysis was conducted by burning the fuels with air, 21% oxygen ($O_2$)/79% carbon dioxide ($CO_2$) and 30% $O_2/70%$ $CO_2$. Heating rates were varied as 5, 10, 25, 40 and $100^{\circ}C/min$. Complete coal combustion was found at the heating rates of 5, 10, 25 and $40^{\circ}C/min$, and different combustion behavior was found with the gas composition at the heating rates of 10, 25, 40 and $100^{\circ}C/min$. Coal combustion with 30% $O_2/70%$ $CO_2$ showed the highest while coal combustion with 21% $O_2/79%$ $CO_2$ showed the lowest combustion rate. On the other hand, the combustion of dried sewage sludge and SRF showed similar combustion behavior with respect to the combustion gas composition. This suggests that oxy-combustion of dried sewage sludge and SRF which contain a large amount of volatile matter may show similar combustion behavior to their air combustion.

사용후핵연료 Voloxidation 공정 분석 (Spent Fuel Voloxidation Process Analysis)

  • 강조홍;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.47-50
    • /
    • 2014
  • Voloxidation is a process for converting $UO_2$ into $U_3O_8$ while removing some volatile products in spent fuels (SF). Various oxidative gas conditions including air and mixture of Ar and $O_2$ could be adopted for the process. The gas flows into a reactor under high temperature ($>500^{\circ}C$) and components of SF are reacted with the gas. SF is composed of various components such as actinides, lanthanides, and alkali metals. Therefore, it is of significance to understand their behavior during the reactions for process development. However, due to the limit of available experiments, phase diagram analysis should be preceded. TPP diagram is constructed with respect to temperature-pressure-pressure. It shows a stable phase depending on partial pressures of gas components as well as temperature. In this work, we investigated TPP diagrams for actinides, lanthanides and other oxides to determine stable oxide forms under different gas conditions. The results would be used to set up a material balance under a pyroprocessing scheme of SF and compare the gas conditions for the optimization of fission products removal.

Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell

  • Lee, Choong-Gon;Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Sang-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.91-96
    • /
    • 2016
  • Oxidation behaviours of ash free coal (AFC), carbon, and H2 fuels were investigated with a coin type molten carbonate fuel cell. Because AFC has no electrical conductivity, its oxidation occurs via gasification to H2 and CO. An interesting behaviour of mass transfer resistance reduction at higher current density was observed. Since the anode reaction has the positive reaction order of H2, CO2 and H2O, the lack of CO2 and H2O from AFC results in a significant mass transfer resistance. However, the anode products of CO2 and H2O at higher current densities raise their partial pressure and mitigate the resistance. The addition of CO2 to AFC reduced the resistance sufficiently, thus the resistance reduction at higher current densities did not appear. Electrochemical impedance results also indicate that the addition of CO2 reduces mass transfer resistance. Carbon and H2 fuels without CO2 and H2O also show similar behaviour to AFC: mass transfer resistance is diminished by raising current density and adding CO2.

고형 에탄올 연료의 기본 물성치 및 연소특성 (Preliminary Properties and Combustion Behavior of Solidified Ethanol Fuel)

  • 김혜민;조민경;양성호
    • 항공우주시스템공학회지
    • /
    • 제13권3호
    • /
    • pp.9-14
    • /
    • 2019
  • 현대에 사용하는 다양한 종류의 액체 및 고체연료는 각각 장단점을 가지고 있으며, 이에 따라 많은 연구자들은 각 연료의 단점을 극복하고 장점만을 취하고자 새로운 형태의 연료를 연구하였다. 본 연구는 액체 에탄올을 고형화 하는 공정을 개발하고, 제조된 연료의 기초 물성치 및 연소특성을 관찰하는데 그 목적이 있다. 고형 에탄올은 아가로스 하이드로젤을 제조하고 이를 에탄올에 침전시키는 방법으로 제조하였다. 실험 조건으로 제조된 고형 에탄올 연료의 정성적/정량적 특성을 관찰하였으며, 이를 통해 제조된 연료의 유효성 및 고형 에탄올 연료의 실제 활용 가능성을 고찰하였다.

황산암모늄 주입시 CFBC 보일러의 오염물질 특성 연구 (A Study on the Characteristics of Pollutants in CFBC Boiler with Ammonium Sulfate Injection)

  • 이창열;정복화;정진도
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.754-761
    • /
    • 2018
  • There is growing concern over the effects of global warning. In response, the power generation sector must consider a wider range of systems and fuels to generate power. One of the classes of solid fuels that is being increasingly developed is biomass. However, one of the most serious problems that biomass plants face is severe corrosion. To mitigate the problem, various approaches have been proposed in terms of additive utilization. This study is based on the results obtained during the co-combustion of wood chip and waste wood in a circulating fluidized bed boiler (CFBC boiler). The KCl concentration was reduced from 59.9 ppm to 3.9 ppm during the injection of ammonium sulfate, and NOx was reduced by 25.5 ppm from 30.6 ppm to 5.1 ppm. However, SOx increased by 110.2 ppm from 33.2 ppm to 143.4 ppm, and HCl increased by 71.5 ppm from 340.5 ppm to 412.0 ppm. Thus, we confirmed that the attitude of the superheater tube was reduced by 87 ~ 93%, and the injection of ammonium sulfate was effective in preventing high-temperature corrosion.

수송 연료용 부분산화 개질기의 운전특성 (Operation characteristics of partial oxidation reformer for transportation fuels)

  • 이상호;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF