• Title/Summary/Keyword: Solid Fuels

Search Result 163, Processing Time 0.024 seconds

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas (천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구)

  • 김남진;정재성;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

Synthesis and Characterization of Tetrazine Derivatives as High Energy Propellants (테트라진 계열의 추진 물질 합성 연구)

  • Lee, Woonghee;Park, Youngchul;Joo, Young-Hyuk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.38-47
    • /
    • 2013
  • Traditional propellants release toxic gases during combustion that are harmful to the environment. This study describes a novel synthetic process of two high nitrogen containing tetrazines, TATTz and BTATz, which can be adapted as solid fuels for a solution to environmental concerns. The compounds were characterized by NMR, IR spectroscopy, and differential scanning calorimetry(DSC). Detonation properties were calculated with the EXPLO5 program based on calculated heats of formation and measured densities.

Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System (SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성)

  • Lee, Byeong Jun;Bae, Chul Han
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

The Study on the Synthesis of Propellant with High Nitrogen Content (고질소 추진물질 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.96-102
    • /
    • 2015
  • Traditional propellants emit toxic gases such as carbon dioxide and hydrogen chloride during combustion which are harmful to the environment. This study established a synthetic process of a high nitrogen containing derivative of tetrazine, 3,3-Azobis(6-Amino-1,2,4,5-Tetrazine) (DAAT), which can be applied as solid fuels for a solution to environmental concerns. Also, this paper described the detailed process and the analytic results of properties, which were not mentioned in previous reports. The compound was characterized by NMR, IR spectroscopy, and thermal, impact, and friction stability were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAAT were calculated using Gaussian 09 and EXPLO5 programs.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

A proposal on SOFC-PEMFC combined system for maritime applications

  • Duong Phan Anh;Ryu Borim;Nguyen Quoc Huy;Lee Jinuk;Kang Hokeun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.162-163
    • /
    • 2022
  • Maritime transportation is going to transfer to alternative fuels as a result of the worldwide demands toward decarbonization and tougher maritime emissions regulations. Methanol is considered as a potential marine fuel, which has the ability to reduce SOx and CO2 emissions, reduce climate change effects, and achieve the objective of green shipping. This work proposes and combines the innovative combination system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbines (GT), and organic Rankine cycles (ORC) for maritime vessels. The system's primary power source is the SOFC, while the GT and PEMFC use the waste heat from the SOFC to generate useful power and improve the system's ability to use waste heat. Each component's thermodynamics model and the combined system's model are established and examined. The multigeneration system's energy and exergy efficiency are 76.2% and 30.3%, respectively. When compared to a SOFC stand-alone system, the energy efficiency of the GT and PEMFC system is increased by 19.2%. The use of PEMFC linked SOFC has significant efficiency when a ship is being started or maneuvered and a quick response from the power and propulsion plant is required.

  • PDF

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Catalytic Wet Gasification of Biomass Mixed Fuels (바이오메스 혼합연료의 습윤 촉매 가스화 연구)

  • Kang, Sung-Kyu;Lee, Seung-Jae;Ryu, In-Soo;Hur, Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.59-72
    • /
    • 2009
  • In order to utilize sewage sludge as a heat source of energy, it goes without saying that the fuel should be clean and pose no threat to the environment. As a consequent, it should not contain even minute quantities of heavy metals / impurities. The SOCA (Sludge-Oil-Coal- Agglomerates) fuel can meet all these requirements. SOCA being a solid fuel can be gasified for the production of clean energy. Wet catalytic gasification is the most appropriate process for SOCA containing nearly 60% water. It is important to note that the SOCA thus obtained inherits ca. 40~50% of sulfur from the coal used. It can poison the catalyst during catalytic gasification process. Consequently, it becomes important to choose a proper catalyst for the gasification. Calcium was found to be ideal choice as a catalyst for the gasification of SOCA. The optimal gasification was performed at $850^{\circ}C$ with water vapor. The role of fuel-N is of utmost importance in the gasification of SOCA. The gasification should be controlled to reduce the production of HCN to a minimum and enhance its conversion to $N_2$ and/or $NH_3$.