• Title/Summary/Keyword: Solid Freeform Fabrication system

Search Result 63, Processing Time 0.027 seconds

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Optimization of Design Parameters of a Pneumatic System (공압시스템의 설계 파라미터 최적화)

  • Um T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents optimization of a pneumatic control system whose design parameters have been optimized so that the desired dynamic characteristics of cylinder position was obtained. The pneumatic system is used as transferring and stacking equipment for solid freeform fabrication system which has been widely used in design verification applications. The pneumatic system mainly consists of pneumatic control valves and cylinders. The system was modeled by using several principles for pneumatic components. The system was optimized to obtain dynamic performance with enough damping to reduce cylinder vibration. A fuzzy controller has been applied to fulfill the dynamic performance requirements of the pneumatic system. The simulation results show that the fuzzy controller is more effective than a PD controller.

  • PDF

A Study on the Industrial Type SFF System using SLS Proecss (SLS 공정을 이용한 산업용 임의형상 제작시스템에 관한 연구)

  • 김동수;임현의;김성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1299-1302
    • /
    • 2004
  • A real object duplication system (RODS), including three dimensional (3D) scanner and solid freeform fabrication system (SFFS), is a device to make three-dimensional objects directly from the drawing or photo data. A Selective Multi-Laser Sintering (SMLS) process designed in this paper is by which computer images received using 3D scanner are built up from polymer powder on building room of large size using dual laser at industrial type SFF system. Using the process can rapidly produce real object duplication components of industrial type such as cylinder, engine block, chassis of automobile, etc. In this paper, the industrial type SFF system using SMLS process is manufactured and the system is satisfied with high precision and high speed processing technique. To research characteristics of each part for theindustrial type SFF system, a structure and thermal analysis and test of each part is carried out. Also, to achievement of high performance for industrial type SFF system, design and fabrication for the structure, heater, nitrogen supply, laser and control part are carried out.

  • PDF

Development of Five Axis Laser Cutting System for the Tangent Cutting Solid freeform fabrication System (임의형상가공시스템을 위한 레이저 5축 경사절단기의 개발)

  • 주영철;엄태준;이창훈;공용해;천인국;김승우;방재철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.260-262
    • /
    • 2002
  • 제품의 소재를 미리 테입 형태로 만들어 단면의 경계면을 따라 레이저로 절단하여 적층하는 방식은 제품의 표면에 계단 모양의 무늬가 생기므로 정밀한 제품을 제작하는데 어려움이 있었다. 이를 극복하기 위하여 단면의 경계선을 절단할 때 수직으로 절단하는 것이 아니라 경사면을 따라 절단하여 전체적인 제품의 옆면이 부드럽게 연결되는 경사절단형 임의형상가공시스템을 개발하였다. 이를 위하여 레이저 5축 경사절단기를 개발하였는데, x축과 y축은 상용화되어 있는 x-y table을 이용하였고 z축은 한 개의 z축 이송대를 이용하였다. 롤과 피치를 위하여는 서보모터 두 개를 이용하여 작업대가 회전할 수 있도록 하였다. 이와 같은 레이저 5축 경사절단기를 개발함으로써 시편의 어느 위치에서든 어느 각도로도 절단이 가능하게 할 수 있었다.

Effect of Sodium Hydroxide Treatment on Scaffold by Solid Freeform Fabrication (조형가공기술을 이용한 인공지지체의 수산화나트륨 개질 효과)

  • Park, SuA;Lee, JungBok;Kim, YangEun;Kim, JiEun;Kwon, IlKeun;Lee, JunHee;Kim, WanDoo;Kim, HyungKeun;Kim, MiEun;Lee, JunSik
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.815-819
    • /
    • 2014
  • Scaffolds of tissue engineering should be biocompatible and biodegradable for cell attachment, proliferation and differentiation. In the various scaffold fabrication, 3D printing technique can make the three dimensional scaffold with interconnected pores for cell ingrowth. Polycaprolactone (PCL) is biodegradable polyester with a low melting temperature and has been approved by the Food and Drug Administration (FDA). In this study, PCL scaffold was fabricated by 3D bioprinting system and surface modification of PCL scaffold was controlled by NaOH treatment. Morphological change and wetability of NaOH-treated scaffold were observed by SEM and contact angle measurement system. The remnant of PCL treated with NaOH was measured by ATR-FTIR. In vitro study of scaffolds was evaluated with WST-1 and ALP activity assay. NaOH treatment of PCL scaffolds increased surface roughness, hydrophilicity, cell proliferation and osteogenic differentiation. These results indicate that NaOH-treated PCL scaffold made by 3D bioprinting has tissue engineered potential for the development of biocompatible material.

Development of New Polymer Powders for the Industrial SFF system by using SLS Process (SLS 공정을 이용한 산업용 SFF 시스템용 신소재 고분자분말 개발)

  • Bang, Young-Kil;Choi, Ki-Seop;Park, Chang-Hyun;Kim, Hyung-Il;Lim, Byung-Seok;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1404-1409
    • /
    • 2007
  • Polymers for laser sintering were needed in order to fabricate the articles with the three-dimensional duplication equipment of SLS (selective laser sintering) process. The thermal properties, particle size, distribution, and shape of polymer powder had a close relation with the processibility of laser sintering. In this study, we prepared new polymer powders with uniform size and higher bulk density by wet process. Wet process consists of several finely-controlled steps such as dissolution, nucleation, propagation and crystallization. Several additives were added to improve the thermal, rheological, and flow properties.

  • PDF

Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System (나노-마이크로 정밀 분사 시스템을 이용한 하이브리드 인공지지체의 제작 및 평가)

  • Ha, Seong-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.875-880
    • /
    • 2014
  • Recently, three-dimensional scaffolds and nanofibers are being developed for bone tissue regeneration. In this study, we fabricated a hybrid scaffold using a nano-micro precision deposition system. The fabrication process involved the application of the solid freeform fabrication (SFF) technology and electrospinning. The hybrid scaffolds were combined using micro scaffolds and nanofibers. The nanofibers were deposited on each layer of the micro scaffolding using the electrospinning process. The micro scaffolds were fabricated using the SFF technology at a temperature of $100^{\circ}C$, pressure of 650 kPa, and scan velocity of 250 mm/s. Nanofiber fabrication was conducted by means of electrospinning using the flow rate, solution concentration, distance from the tip to the collector (TCD), and voltage. The nanofibers were fabricated using a flow rate of 0.1 ml/min, voltage of 5 kV, TCD of 1 mm, and 10 wt% of solution concentration. MG-63 cells were seeded into the hybrid scaffold for the purpose of its evaluation.

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Solid Freeform Fabrication of Metal Prototype Using Direct Metal Shaping Process (직접식 금속 적층공정을 이용한 금속 시제품 제작)

  • Kim, Jae-Do;Park, Jin-Yong;Cho, Myeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.56-62
    • /
    • 2000
  • A fast and precise technique to make 3-dimensional object which is called direct metal shaping process is processed. It is very useful technique in design and inspection. Using this developed system, a solid object is made. In experiment, test parts are built by varying three factors, laser power, scan path, scan speed. This process used device, which is different from the widely used in rapid prototyping in that powder feeding device is used. Spraying powder directly at the focused laser beam and then three dimensional object is made by the deposit of melted metal powder. The optimum scanning path is found to be zigzag path, which had little thermal affection on base metal. As a result of these experiments, it was found that optimum scanning speed is 15mm/sec laser power is 50W. This constructed 3-dimensional object could be used in mold manufacturing directly.

  • PDF