• Title/Summary/Keyword: Solid Freeform Fabrication system

Search Result 63, Processing Time 0.032 seconds

Development and Sintering test of Industrial SFF system using SLS process (SLS 공정을 이용한 산업용 SFF 시스템의 개발 및 소결실험)

  • Jo, Hong-Seok;Cho, Hyun-Taek;Baek, Yung-Jong;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1389-1393
    • /
    • 2007
  • Selective Laser Sintering (SLS) is currently recognized as a leading process in the new field of solid freeform fabrication (SFF). It is used to fabricate in a short time any 3 dimensional shapes by layer-by-layer sintering of polymer, ceramic or metal powder. To develop this SFF system, it needs effective laser scanning path, temperature and z-axis control for lamination. Therefore, in this study, through the application of control algorithm for sintering process have performed, temperature evaluation for sintering process has performed and the manufacturing sample using SLS process.

  • PDF

Development of Industrial SFF System using Dual Laser (듀얼 레이저를 이용한 산업용 SFF 시스템의 개발)

  • Kim D.S.;Bae S.W.;Kim C.H.;Choi B.O.;Choi K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.193-194
    • /
    • 2006
  • A solid freeform fabrication (SFF) system using selective laser sintering (SLS) is currently recognized as a leading process and SLS extends the applications to machinery and automobiles due to the variousmaterials employed. In order to develop a more elaborate and rapid system for fabricating large objects compared to existing SLS, this study employs a new selective dual-laser sintering (SDLS) process. Also, this paper will address development of an SFF system which employs the dual laser system and the unique scanning device. Experiments were performed to evaluate the effect of a scanning path and fabrication parameters on sintering process and to fabricate the various 3D objects using polymer powder.

  • PDF

The Implementation of Agile SFFS using 5DOF Robot

  • Kim, Seung-Woo;Jung, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.716-721
    • /
    • 2004
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of speedy prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the ${CAFL}^{VM}$(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. In this paper, we design an algorithm that the cutting path of a laser beam which is controlled with constant speed. The laser beam is tangentially controlled in order to solve the inaccuracy of a 3D model surface. The designed algorithm for constant-speed path control and tangent-cutting control is implemented and experimented in the ${CAFL}^{VM}$ system.

  • PDF

An Experimental Study for Drawing of Optimal Process Condition in the SLS Process (SLS 공정에서 최적 공정 조건 도출을 위한 실험적 연구)

  • Bae, Sung-Woo;Yoo, Seong-Yeon;Kim, Dong-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.516-524
    • /
    • 2012
  • Selective Laser Sintering(SLS) system consists of various element technologies. Main components of the system include a position control system, a speed control system of the roller, and nitrogen atmosphere furtherance for the powdered sintering. Other systems which make the core of the SLS system are build room and the feed room for powder epitaxial, a temperature control system, and a scan path generator for the laser. The powder material for laser sintering is necessary to produce prototypes in Solid Freeform Fabrication(SFF) based on SLS process. This powder material is sintered in powder room using $CO_2$ laser after spreading evenly using roller to reproduce mold via SFF. This study addresses an SFF system by using the SLS process which applies single laser system to enable manufacturing of 3D shape. And to evaluate applicability of the single laser system, experiments were conducted with optimal fabricating process.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.