• Title/Summary/Keyword: Solid Freeform Fabrication System

Search Result 63, Processing Time 0.026 seconds

A Development of Constant-Speed Position Controller for Solid Freeform Fabrication System (임의형상가공시스템을 위한 정속위치제어기 개발)

  • 고민국;김승우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.91-94
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in foreign some corporations including the U.S.A, have much technological problems yet and need new mode for agile prototyping. In this paper, we design algorithm that the cutting path of laser beam, on the SFFS(Solid Freeform Fabrication System), is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which was developed in this paper.

  • PDF

PC-based Controller for Industrial Solid Freeform Fabrication System (산업용 SFFS (Solid Freeform Fabrication System)을 위한 PC 기반 제어기)

  • 박남수;황면중;이두용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • This paper presents a PC-based controller of industrial SFFS(Solid Freeform Fabrication System). The SFFS has multiple sub-controllers for the building room, the powder room, the temperature, and the density of oxygen in the chambers. Hence the main PC-based controller should effectively and timely send commands to the sub-controllers, and monitor the overall SLS process. The required actuators and sensors are selected to optimize the overall performance of the SFFS.

  • PDF

Process Optimization of Industrial Solid Freeform Fabrication System (산업용 임의형상제작(Solid Freeform Fabrication)시스템의 공정변수 최적화)

  • Kwak, Sung-Jo;Lee, Doo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.602-609
    • /
    • 2008
  • This paper presents experimental optimization of process parameters for a newly developed SFF(Solid Freeform Fabrication) system. Two critical process parameters, layering thickness and curing period, which have a large effect on the quality of the product, are optimized through experiments. Specimens are produced using layering thicknesses of 60, 80, 100, 120, 140, and $160\;{\mu}m$ and curing periods of 0, 10, 20, and 30 minutes under the same processing conditions, i.e., build-room temperature, feed-room temperature, roller speed, laser power, scan speed, and scan spacing. The specimens are tested to compare and analyze performance indices such as thickness accuracy, flatness, stress-strain characteristics, and porosity. The experimental result indicates that layering thickness of $80{\sim}100\;{\mu}m$ and curing period of $20{\sim}30$ minutes are recommended for the developed industrial SFF system.

Solid freeform fabrication and its application to tissue engineering (자유 형상 제작 기술 및 이의 조직 공학 적용)

  • Kang, Hyun-Wook;Lee, Jin-Woo;Kim, Jong-Young;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1415-1418
    • /
    • 2008
  • Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, Solid freeform fabrication (SFF) technology was remarked by fabricating 3D free-form micro-structures. Among SFF technologies, we tried to fabricate scaffolds using micro-stereolithography which contain the highest resolution of all SFF technologies and precision deposition system which can use various biomaterials. And we developed the CAD/CAM system to automate the process of scaffold fabrication and fabricate the patient customized scaffolds. These results showed the unlimited possibilities of our SFF technologies in tissue engineering.

  • PDF

Development of Office Type SFF System (UV Curing 공정을 이용한 오피스용 SFF System 개발)

  • Kwon, Jeong-Jae;Cho, Hyun-Taek;Baek, Yung-Jong;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1400-1403
    • /
    • 2007
  • The 3DP(three dimensional printing) technology is one of the SFF(solid freeform fabrication) technologies which has recently come into a spotlight due to its suitability to various field. A manufacturing process of product is using many pattern formation technology. The 3DP technology uses multi nozzle that can fabricate three dimensional object of high speed and accuracy. In this paper, we introduce a development of the office type solid freeform fabrication system. This system is used UV resin and multi-piezo head.

  • PDF

Automation of Solid Freeform Fabrication System

  • Min, Sang-Hyun;Um, Tai-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.91.1-91
    • /
    • 2002
  • 1. Introduction Present study presents the basic concept of a Solid Freeform Fabrication System using a rapid prototyping procedure and optimal control for a transferring and accumulating system. And it developed a novel rapid prototyping process that can use ceramic or metal as well as polymer as a basic material. 2. Solid Freeform Fabrication System 2.1 Basic Theory A 3D CAD data of the model is converted to the 2D cross-section data of the slides. A ceramic or metal tape of thickness 0.5-1.5mm is cut by a laser beam with the cross-section data of the slide. A 3D model was obtained by transferring and accumulating the slides. The final product is manufactured by sin...

  • PDF

A Study on Constant-Speed Position Control of Solid Freeform Fabrication System (임의형상가공시스템의 정속위치제어)

  • Jung, Yong-Rae;Ko, Min-Kook;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF

A Study of Dynamic Characteristics of Stacking and Transferring System for the Solid Freeform Fabrication System (임의형상가공시스템의 적층 및 이송장치 동특성연구)

  • 엄태준;주영철;민상현;김승우;공용해;천인국;방재철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.280-284
    • /
    • 2002
  • This paper presents computer simulations of the stacking and transferring system for the fast freeform fabrication system. The stacking and transferring system is essential for the fast freeform fabrication system and its stable motion is very important for consistent stacking of the cut slices. The stacking and transferring system can be modeled as a pneumatic system. The system consists of air compressor, the control valve, and the cylinder. The governing parameters have been changed and the simulation results are shown to predict the time response of the system. The results show some parameters should be correctly tuned to obtain stable system response.

  • PDF

Fabrication of Part and Its Evaluation Using Dual Laser in Solid Freeform Fabrication System (SFFS에서 듀얼 레이저를 이용한 부품 제작 및 평가)

  • Choi Jae-Won;Kim Dong-Soo;Doh Yang-Hoe;Lee Seok-Hee;Choi Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.334-341
    • /
    • 2006
  • A solid freeform fabrication (SFF) system using selective laser sintering (SLS) is currently recognized as a leading process and the SLS extends the applications to machinery and automobiles due to various employing materials. In order to fabricate a large part with SFF system, dual laser approach has been introduced. Since the building room is divided into two regions, each scan path for dual laser system is generated based on the single laser scan path. Scan paths for each laser have to be synchronized and consider mechanical strength against fracture at the interfaced region. This paper will address generation of single laser scan path which deals with special cases for unnecessary scan points and generation of dual laser scan path according to various divided regions to enhance mechanical strength. To evaluate the developed scan path method, the specimen will be fabricated and evaluated.

The Control of SFFS in the Office Environments and It's Integration

  • Kim, Jung-Su;Lee, Min-Cheol;Lee, Won-Hee;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2164-2169
    • /
    • 2005
  • SFFS(Solid Freeform Fabrication System) can quickly makes models and prototype parts from 3D computer-aided design (CAD) data. Three dimensional printing(3DP) is a kind of the solid freeform fabrication. The 3DP process slices the modeling data into the 50-200um along to z axis. And we pile the powder and make the manufactures. A manufacture is made by the SFFS has the precision of the 50um. Therefore the x-y table of SFFS to move a printhead must be the system that has a high speed and accuracy. So we proposed the SMCSPO algorithm for SFFS. The major contribution is the design of a robust observer for estimating the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the simulation and the experiment. The control algorithm of the SFFS is presented in the office environment. The system between control system and printhead for the SFFS is also integrated

  • PDF