• 제목/요약/키워드: Solid Drive Shaft(SDS)

검색결과 3건 처리시간 0.016초

로터리 스웨이징 공정으로 성형된 자동차 중공 드라이브샤프트의 성능특성 연구 (Performance Characteristics of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process)

  • 임성주;이낙규;나경환;이지환
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.654-661
    • /
    • 2003
  • A monobloc TDS(Tube Drive Shaft) has been developed by using the rotary swaging process which is one of the incremental forming process. In order to estimate the developed TDS performance characteristics such as natural frequency, strength, stiffness and mass, finite element analysis has been carried out using commercial software, MSC/NASTRAN. The calculated performance characteristics have been compared with analysis results of SDS(Solid Drive Shaft) to know how much improve the performance characteristics. Also the sensitivity analyses of design parameters for the tube length and diameter have been performed. From the analysis results, it was found that the TDS allowed for a high frequency and could be designed to be much lighter than SDS. This advantage can give possibility to tune the NVH (Noise-Vibration-Harshness) characteristics.

자동차용 중공드라이브 샤프트의 성형공정 연구 (Forming Process of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process)

  • 임성주;이낙규;오태원;이지환
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.558-565
    • /
    • 2003
  • Rotary swaging is one of the incremental forming process which is a chipless metal forming process for the reduction of cross-sections of bars, tubes and wires. In the present work, the rotary swaging machine and dies were designed to investigate the formability of TDS(Tube Drive Shaft) used in automotive industry. The process variables such as the speed of forming, the shape of the formed materials and the reduction of area were also estimated to study experimental analyses of rotary swaging process using the materials of 34Mn5 and S45C. From experimental results, it was found that the process variables affected the quality of TDS in terms of hardness, the precision of products and the surface roughness. The hardness after swaging approved to be Increased with the increase in the reduction of diameter. And it was found that the grain size became smaller and the elongated grains were formed in the axis direction.

로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성 (Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming)

  • 임성주;이낙규;이지환
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.