• Title/Summary/Keyword: Solder paste

Search Result 97, Processing Time 0.029 seconds

Evaluation of Solder Printing Efficiency with the Variation of Stencil Aperture Size (스텐실 개구홀 크기 변화에 따른 솔더프린팅 인쇄효율 평가)

  • Kwon, Sang-Hyun;Kim, Jeong-Han;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2011
  • Main parameters of the screen printing were determined and the printing parameters were optimized for 0402, 0603, and 1005 chips in this study. The solder pastes used in this study were Sn-3.0Ag-0.5Cu and Sn-0.7Cu. The process parameters were stencil thickness, squeegee angle, printing speed, stencil separating speed and gap between stencil and PCB. The printing pressure was fixed at 2 $kgf/cm^2$. From ANOVA results, the stencil thickness and the squeegee angle were determined to be main parameters for the printing efficiency. The printing efficiency was optimized with varying two main parameters, the stencil thickness and the squeegee angle. The printing efficiency increased as the squeegee angle was lowered under 45o for all chips. For the 0402 and the 0603 chips, the printing efficiency increased as the stencil thickness decreased. On the other hand, for the 1005 chip, the printing efficiency increased as the stencil thickness increased.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP (PoP용 패시브 소자 임베디드 기판의 warpage 감소를 위한 파라메타 설계에 관한 연구)

  • Cho, Seunghyun;Kim, Dohan;Oh, Youngjin;Lee, Jongtae;Cha, Sangsuk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In this paper, numerical analysis by finite element method and parameter design by the Taguchi method were used to reduce warpage of a two passive components embedded double side substrate for PoP(Package on Package). The effect of thickness of circuit layers (L1, L2) and thickness of solder resist (SR_top, SR_BTM) were analyzed with 4 variations and 3 levels(minimum, average and maximum thickness) to find optimized thickness conditions. Also, paste effect of solder resist on unit area of top surface was analyzed. Finally, experiments was carried out to prove numerical analysis and the Taguchi method. Based on the numerical and experimental results, it was known that circuit layer in ball side of substrate was the most severe determining deviation for reducing warpage. Buried circuit layer in chip side, solder resist and were insignificant effects on warpage relatively. However, warpage decreased as circuit layer in ball side thickness increased but effect of solder resist and circuit layer in chip side thickness were conversely.

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

Self-Assembling Adhesive Bonding by Using Fusible Alloy Paste for Microelectronics Packaging

  • Yasuda, Kiyokazu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • In the modern packaging technologies highly condensed metal interconnects are typically formed by highcost processes. These methods inevitably require the precise controls of mutually dependant process parameters, which usually cause the difficulty of the change in the layout design for interconnects of chip to-chip, or chip-to-substrate. In order to overcome these problems, the unique concept and methodology of self-assembly even in micro-meter scale were developed. In this report we focus on the factors which influenced the self-formed bumps by analyzing the phenomenon experimentally. In case of RMA flux, homogenous pattern was obtained in both plain surface and cross-section surface observation. By using RA flux, the phenomena were accelerated although the self-formtion results was inhomogenous. With ussage of moderate RA flux, reaction rate of the self-formation was accelerated with homogeneous pattern.

Placement inspection of the SMT components using 3-D vision (시각센서를 이용한 SMT 부품장착상태 검사)

  • 손영탁;오형렬;윤한종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.605-608
    • /
    • 1996
  • The aim of this thesis is to develop a SMT-components placement inspection system equipped with a visual sensor. The visual sensor, which consists of a camera and 2-layer LED illuminator, developed to inspect the component placement state such as missing, shift, flipping, polarity and tomb-stone. on PCB in the reflow-process. In practical applications, however, it is too hard to classify component from images mixed pad on PCB, cream solder paste and component. To overcome the problem, this thesis proposes the 2-layer illumination method and the heuristic image processing algorithms according to inspection type. To show the effectiveness of the proposed approach, a series of experiments on the inspection were conducted. The results show that the proposed method is robust to visual noise and variations in component conditions.

  • PDF

Solder Paste Pattern Classification Using the XOR Operation in Vision Inspection Machines (비젼 검사시스템에서 XOR연산을 이용한 납땜형상의 패턴분류)

  • Lee, Chang-Gil;Hwang, Jung-Ho;Kim, Min-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2735-2737
    • /
    • 2001
  • 비젼 검사시스템에서 기판에 존재하는 납 형상의 패턴을 분류함으로써 사전에 불량을 줄일 수 있다. 이러한 경우 대부분의 불량은 부정확한 납의 위치 및 두께로 인해 발생하게 되는데, 이러한 문제를 해결하기 위해 주어진 경계 내에 불분명하게 형성된 납의 형태 및 두께를 정상과 불량으로 분류하기 위해 무게중심점에 기초한 정합과 XOR연산을 이용한 비젼 검사시스템을 제안하였다. 제안한 비젼 검사시스템을 인쇄회로기판상의 납땜형상 패턴에 적용하여 제안한 방법의 성능을 검증하였다.

  • PDF

A Study on the Element Technology for PV Module Manufacturing (태양전지모듈 제조를 위한 요소기술연구)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Un;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1365-1367
    • /
    • 2003
  • In this paper, element technologies such as soldering. arrangement and lamination processes for photovoltaic module manufacture were examined and described as main processes. Especially solder paste and temperature condition in soldering process, loss factor in arrangement process and process conditions in lamination process are investigated to minimize the electrical loss. As a results, temperature condition in soldering process was found to be critical to contact resistance of electrode and life-time. Productivity of the process decreases dramatically by physical damage during arrangement process. Pressure level and press condition of upper chamber in lamination process were important parameters for the reliability. According to the test result of photovoltaic module, electrical properties dropped about $5{\sim}25%$ after 5 years.

  • PDF

Analysis of Bonding Interfaces between Cemented Carbide and Stainless Steel made via Hot Vacuum Brazing (고온 진공 브레이징을 이용한 초경합금과 스테인리스강의 접합 계면 특성)

  • Park, D.H.;Hyun, K.H.;Kwon, H.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.307-315
    • /
    • 2020
  • The cemented carbide and stainless steel were bonded using a hot-vacuum brazing method to analyze the bonding interface. Since it is suitable for the hot vacuum brazing, nickel metal was used as a binder among the main components of the cemented carbide, and a new cemented carbide material was developed by adjusting the alloy composition. The paste, which is one of the important factors affecting the hot vacuum brazing bonding, was able to improve brazing adhesion by mixing solder as Ni powder and a binder as an organic compound at an appropriate ratio. Division of the stainless steel yielded a dense brazing result. This study elucidated the interfacial characteristics of wear-resistant parts by bonding stainless steel and cemented carbide via hot vacuum brazing.

Process window of simultaneous transfer and bonding materials using laser-assisted bonding for mini- and micro-LED display panel packaging

  • Yong-Sung Eom;Gwang-Mun Choi;Ki-Seok Jang;Jiho Joo;Chan-mi Lee;Jin-Hyuk Oh;Seok-Hwan Moon;Kwang-Seong Choi
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.347-359
    • /
    • 2024
  • A simultaneous transfer and bonding (SITRAB) process using areal laser irradiation is introduced for high-yield and cost-effective production of mini- or micro-light-emitting diode (LED) display panels. SITRAB materials are special epoxy-based solvent-free pastes. Three types of pot life are studied to obtain a convenient SITRAB process: Room temperature pot life (RPL), stage pot life (SPL), and laser pot life (LPL). In this study, the RPL was found to be 1.2 times the starting viscosity at 25℃, and the SPL was defined as the time the solder can be wetted by the SITRAB paste at given stage temperatures of 80℃, 90℃, and 100℃. The LPL, on the other hand, was referred to as the number of areal laser irradiations for the tiling process for red, green, and blue LEDs at the given stage temperatures. The process windows of SPL and LPL were identified based on their critical time and conversion requirements for good solder wetting. The measured RPL and SPL at the stage temperature of 80℃ were 6 days and 8 h, respectively, and the LPL was more than six at these stage temperatures.