• Title/Summary/Keyword: Solar wafer

Search Result 281, Processing Time 0.027 seconds

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

An optimal design for the local back contact pattern of crystalline silicon solar cells by using PC1D simulation (PC1D Simulation을 통한 결정질 실리콘 태양전지의 국부적 후면 전극 최적화 설계)

  • Oh, Sungkeun;Lim, Chung-Hyun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • In the crystalline silicon solar cells, the full area aluminum_back surface field(BSF) is routinely achieved through the screen-printing of aluminum paste and rapid firing. It is widely used in the industrial solar cell because of the simple and cost-effective process to suppress the overall recombination at the back surface. However, it still has limitations such as the relatively higher recombination rate and the low-to-moderate reflectance. In addition, it is difficult to apply it to thinner substrate due to wafer bowing. In the recent years, the dielectric back-passivated cell with local back contacts has been developed and implemented to overcome its disadvantages. Although it is successful to gain a lower value of surface recombination velocity(SRV), the series resistance($R_{series}$) becomes even more important than the conventional solar cell. That is, it is a trade off relationship between the SRV and the $R_{series}$ as a function of the contact size, the contact spacing and the geometry of the opening. Therefore it is essential to find the best compromise between them for the high efficiency solar cell. We have investigated the optimal design for the local back contact by using PC1D simulation.

  • PDF

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell (고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화)

  • Pi, Ji-Hee;Kim, Sung-Jin;Son, Chang-Rok;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.

Laser texturing on the surface for improvement of multi-crystalline solar cells (다결정 태양 전지 효율 향상 위한 Laser 표면 texturing)

  • Kim, Tae-Hoon;Kim, Sun-Young;Ko, Ji-Soo;Park, Hyun-Ho;Kim, Kwang-Ryul;Jo, Chang-Hyun;Shin, Sung-Wook;Choi, Byoung-Deog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.364-364
    • /
    • 2009
  • The solar cell is in the spotlight as a future green energy source. In the solar cells based on silicon wafer, the improvement of efficiency is one of crucial issues. One of techniques for high efficiency is texturing on the surface of solar cells. We studied the laser texturing on the surface of multi-crystalline silicon solar cells. The laser texturing followed by chemical etching is adequate for the multi-crystalline structure which have random crystallographic directions. We used the fiber laser for texturing and the SiNx as a masking layer for etching process. We investigated the shapes of holes for texturing in the various laser power conditions and analyzed the holes after removal of thermal damages caused by laser ablation through a 3D profiler.

  • PDF

Texturing of Two Adhered Wafers for High Efficiency Crystalline Silicon Solar Cells (웨이퍼 접착 텍스쳐링을 이용한 결정질 실리콘 태양전지 고효율화 연구)

  • Lim, Hyoung-Rae;Joo, Gwang-Sik;Roh, Si-Cheol;Choi, Jeong-Ho;Jung, Jong-Dae;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • The texturing is one of the most important processes for high efficiency crystalline silicon solar cells. The rear side flatness of silicon solar cell is very important for increasing the light reflectance and forming uniform back surface field(BSF) region in manufacturing high efficiency crystalline silicon solar cells. We investigated texturing difference between front and rear side of wafer by texturing of two adhered wafers. As a result, the flatter rear side was obtained by forming less pyramid size compared to the front side and improved reflectance of long wavelength and back surface field(BSF) region were also achieved. Therefore, the texturing of two adhered wafers can be expected to improve the efficiency of silicon solar cells due to increased short circuit current(Isc).

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

Characteristics of Recycled Wafer for Solar Cell According to DRE Process (DRE 공정이 태양전지용 재생웨이퍼 특성에 미치는 영향)

  • Jung, D.G.;Kong, D.Y.;Yun, S.H.;Seo, C.T.;Lee, Y.H.;Cho, C.S.;Kim, B.H.;Bae, Y.H.;Lee, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • of materials and simplification of process. Micro-blasting is one of the promising method for recycling of waste wafer due to their simple and low cost process. Therefore, in this paper, we make recycling wafer through the micro-blaster. A surface etched by micro-blaster forms particles, cracks and pyramid structure. A pyramid structure formed by micro-blaster has a advantage of reflectivity decrease. However, lifetime of minority carrier is decreased by particles and cracks. In order to solve this problems, we carried out the DRE(Damage Romove Etching). There are two ways to DRE process ; wet etching, dry etching. After the DRE process, we measured reflectivity and lifetime of minority carrier. Through these results, we confirmed that a wafer recycled can be used in solar cell.