• Title/Summary/Keyword: Solar tracking system

Search Result 381, Processing Time 0.025 seconds

TMC (Tracker Motion Controller) Using Sensors and GPS Implementation and Performance Analysis (센서와 GPS를 이용한 TMC의 구현 및 성능 분석)

  • Ko, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.828-834
    • /
    • 2013
  • In this paper, TMC (Tracker Motion Controller) as one of the many research methods for condensing efficiency improvements can be condensed into efficient solar system configuration to improve the power generation efficiency of the castle with Concentrated solar silicon and photovoltaic systems (CPV)experiments using PV systems. Microprocessor used on the solar system, tracing the development of solar altitude and latitude of each is calculated in real time. Also accept the value from the sensor, motor control and communication with the central control system by calculating the value of the current position of the sun, there is a growing burden on the applicability. Through the way the program is appropriate for solar power systems and sensors hybrid-type algorithm was implemented in the ARM core with built-in TMC, Concentrated CPV system compared to the existing PV systems, through the implementation of the TMC in the country's power generation efficiency compared and analyzed. Sensor method using existing experimental results Concentrated solar power systems to communicate the value of GPS location tracking method hybrid solar horizons in the coordinate system of the sun's azimuth and elevation angles calculated by the program in the calculations of astronomy through experimental resultslook clear day at high solar irradiation were shown to have a large difference. Stopped after a certain period of time, the sun appears in the blind spot of the sensor, the sensor error that can occur from climate change, however, do not have a cloudy and clear day solar radiation sensor does not keep track of the position of the sun, rather than the sensor of excellence could be found. It is expected that research is constantly needed for the system with ongoing research for development of solar cell efficiency increases to reduce the production cost of power generation, high efficiency condensing type according to the change of climate with the optimal development of the ability TMC.

Boost Converter Modeling of Photovoltaic Conditioning System for MPPT ("PV Converter 모델링"을 적용한 MPPT제어기법)

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Development of Solar Power System of Driving a Hybrid LED Streetlight (LED 가로등 구동용 하이브리드 태양광 전원장치 개발)

  • Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6006-6012
    • /
    • 2012
  • General solar street light system needs two separate power supply for charging the battery and driving LED Lamp. In this study, one power supply is used for both charging battery and driving LED lamp. In particular, in order to increase the efficiency of the equipment, (maximum power point tracking: MPPT) was applied which is widely adopted in grid-connected solar systems. LED driver embodied using current control routine of charger into Essential constant current system.

MPPT Control of Photovoltaic Generation Using MLPO Method (MLPO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2064-2075
    • /
    • 2011
  • In this paper, robust multi-level perturbation and observation (MLPO) maximum power point tracking (MPPT) control are presented of the environmental change including the solar radiation and temperature. Because the maximum power point of the Photovoltaic (PV) is changing according to the solar radiation and temperature, the technology which traces the maximum power point in order to increase the power efficiency is recognized as the very important part. The general requirement for the MPPT is that system is simple, the cost is inexpensive, the PV tracking function and output change are small. Conventional perturbation and observation (PO) method is a simple system but there is the disadvantage that an efficiency of system becomes low. In addation, the incremental conductance (IC) control is required expensive CPU because of a large of calculations. In order to solve this problem, in this paper, the MLPO MPPT control using the method diversifying the step size according to the environment condition is presented. The validity of the MLPO method presenting from this paper is proved through analyzing the solar power generation output error at the steady state.

A study on the Photovoltaic Tracker System Using Method of Intelligent control (지능형 제어기법을 이용한 태양추적시스템에 관한 연구)

  • Kim, Pyoung-Ho;Baek, Hyung-Lae;Cho, Geum-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, 150W photovoltaic system using neural network tracker is proposed, the system designed as the normal line of the solar cell always runs parallel the ray of the sun. This design can minimize the cosine loss of the system output results of solar cell are sensitive to the change of weather and insolation condition don't react rapidly to parameter condition change such as system circumstance and deterioration. To achieve precise operation of photovoltaic tracker system using method of intelligent control, Neural Network is used in the design of the photovoltaic tracker system drive. The control performance of this system drive influenced by the environment parameter such as weather condition and motor parameter variations. we used synchronous motor in this tracker and the experimental results show that the fixing system shows 10,159[Wh] and tracking system shows 12,360[Wh] electricity.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

Development of Heliostat Field Operational Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 타워형 태양열발전시스템의 헬리오스타트 필드 운영 알고리즘 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.33-41
    • /
    • 2014
  • Heliostat field in a tower type solar thermal power plant is the sun tracking mirror system which affects the overall efficiency of solar thermal power plant most significantly while consumes a large amount of energy to operate it. Thus optimal operation of it is very crucial for maximizing the energy collection and, at the same time, for minimizing the operating cost. Heliostat field operational algorithm is the logics to control the heliostat field efficiently so as to optimize the heliostat field optical efficiency and to protect the system from damage as well as to reduce the energy consumption required to operate the field. This work presents the heliostat field operational algorithm developed for the heliostat field of 200kW solar thermal power plant built in Daegu, Korea. We first review the structure of heliostat field control system proposed in the previous work to provide the conceptual framework of how the algorithm developed in this work could be implemented. Then the methodologies to operate the heliostat field properly and efficiently, by defining and explaining the various operation modes, are discussed. A simulation, showing the heat flux distribution collected by the heliostat field at the receiver, is used to show the usefulness of proposed heliostat field operational algorithm.

A Solar Energy Harvesting Circuit with Low-Cost MPPT Control for Low Duty-Cycled Sensor Nodes. (낮은 듀티 동작의 센서 노드를 위한 저비용 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.397-400
    • /
    • 2015
  • In this paper a solar energy harvesting system with low-cost MPPT control for low duty-cycled sensor nodes is proposed. The targeted applications are environment, structure monitoring sensor nodes that are not required successively to operate, and MPPT(Maximum Power point Tracking) control using simple circuits is low-cost differently than existing MPPT control. The proposed MPPT control is implemented using linear relationship between the open-circuit voltage of a solar cell. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the solar cell and delivers the maximum available power to the load. The proposed circuit is designed in 0.35um CMOS process. The designed chip area is $975um{\times}1025um$ including pads. Measured results show that the designed system can track the MPP voltage by sampling periodically the open circuit voltage of solar cell.

  • PDF

DEVELOPMENT OF AN AUTOMATIC OBSERVATION SYSTEM FOR KOREAN e-CALLISTO STATION (한국 e-CALLISTO 관측소 자동 관측 시스템 개발)

  • PARK, JONGYEOB;CHOI, SEONGHWAN;BONG, SU-CHAN;KWON, YONGJUN;BAEK, JI-HYE;JANG, BI-HO;CHO, KYUNG-SUK;MOON, YONG-JAE;Monstein, Christian
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.3
    • /
    • pp.811-819
    • /
    • 2015
  • The e-CALLISTO is a network of CALLISTO (Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories) spectrometers which detect solar radio bursts 24 hours a day in frequency range 45-870 MHz. The number of channels per spectrum is 200 and the time resolution of whole spectrum is 0.25 second. The Korean e-CALLISTO station was developed by Korea Astronomy and Space Science Institute (KASI) collaborating with Swiss Federal Institute of Technology Zurich (ETH Zurich) since 2007. In this paper, we report replacement of the tracking mount and development of the control program using Visual C++/MFC. The program can make the tracking mount track the Sun and schedule CALLISTO to start and to finish its observation automatically using the Solar Position Algorithm (SPA). Daily tracking errors (RMSE) are 0.0028 degree in azimuthal axis and 0.0019 degree in elevational axis between 2014 January and 2015 July. We expect that the program can save time and labor to make the observations of solar activity for space weather monitoring, and improve CALLISTO data quality due to the stable and precise tracking methods.