• 제목/요약/키워드: Solar tracking algorithm

검색결과 146건 처리시간 0.02초

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘 (The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications)

  • 김승민;박봉희;최주엽;최익;이상철;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

그림자 영향을 고려한 PV MIC 시스템의 새로운 MPPT 제어 (A Novel MPPT Control of PV MIC System Considering the Shaded Effect)

  • 최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the new maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. Particularly, MIC system is very sensitive to the shadow influence because the capacity is very small. In order to increase an output and efficiency of the solar power generation, the maximum power point(MPP) obeying control are necessary. Conventional perturbation and observation(PO) and Incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the new control algorithm of the multi-level in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved. through the output error response characteristics.

건물용 태양광 컨버터의 최대전력 추종 기법 개발 (Maximum power point tracking method for building integrated PV system)

  • 유병규;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

태양광 발전시스템을 위한 신경회로망 PID 기반 MPPT 알고리즘 (Neural PID Based MPPT Algorithm for Photovoltaic Generator System)

  • 박지호;조현철;김동완
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.14-22
    • /
    • 2012
  • Performance of photovoltaic (PV) generator systems relies on its operating conditions. Maximum power extracted from PV generators depends strongly on solar irradiation, load impedance, and ambient temperature. A most maximum power point tracking (MPPT) algorithm is based on a perturb and observe method and an incremental conductance method. It is well known the latter is better in terms of dynamics and tracking characteristics under condition of rapidly changing solar irradiation. However, in case of digital implementation, the latter has some error for determining a maximum power point. This paper presents a PID based MPPT algorithm for such PV systems. We use neural network technique for determining PID parameters by online learning approach. And we construct a boost converter to regulate the output voltage from PV generator system. Computer simulation is carried out to evaluate the proposed MPPT method and we accomplish comparative study with a perturb and observe based MPPT method to prove its superiority.

다목적 실용위성의 태양 전지를 위한 아날로그 MPPT (The analog MPPT for the solar array of KOMPSAT)

  • 박희성;장성수;박성우;장진백;이종인
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.105-108
    • /
    • 2004
  • In this paper, the simple analog MPPT (Maximum Power Point Tracking) algorithm is proposed for the solar array of KOMPSAT (Korea Multi-Purpose Satellite). This method doesn't need any calculation of power by multiplication of voltage and current and a measurement of the solar array temperature. It is consist of only two sample and hold circuits, two comparators, a flip-flop, and an integrator. The proposed MPPT algorithm is verified by the simulation for the 100[W] solar array.

  • PDF

실제 일사량 조건에서의 최적 MPPT 제어주기 (Optimum MPPT Control Period for Actual Insolation Condition)

  • 류단비;김용중;김효성
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.99-104
    • /
    • 2019
  • Solar power generation systems require maximum power point tracking (MPPT) control to acquire maximum power using inefficient and high-cost PV modules. Most conventional MPPT algorithms are based on the slope-tracking concept. The perturb and observe (P&O) algorithm is a typical slope-tracking method. The two factors that determine the MPPT performance of P&O algorithm are the MPPT control period and the magnitude of the perturbation voltage. The MPPT controller quickly moves to the new maximum power point at insolation change when the perturbation voltage is set to large, and the error of output power will be huge in the steady state even when insolation is not changing. The dynamics of the MPPT controller can be accelerated even though the perturbation voltage is set to small when the MPPT control period is set to short. However, too short MPPT control period does not improve MPPT performance but consumes the MPPT controller resources. Therefore, analyzing the performance of the MPPT controller is necessary for actual insolation conditions in real weather environment to determine the optimum MPPT control period and the magnitude of the perturbation voltage. This study proposes an optimum MPPT control period that maximizes MPPT efficiency by measuring and analyzing actual insolation profiles in typical clear and cloudy weather in central Korea.

태양광 패널 재사용을 위한 가변 정전류 기반의 효율 측정장치에 관한 연구 (Research on Variable Constant Current Efficiency Measuring Device for Solar Panel to Reuse)

  • 우상진;김대헌;이재진;권오민
    • 대한임베디드공학회논문지
    • /
    • 제18권1호
    • /
    • pp.9-17
    • /
    • 2023
  • This paper relates to the development of a device for measuring the efficiency of a solar panel based on a variable constant current, and proposed a standard for reuse of the solar panel. By applying a variable constant current circuit to a solar panel efficiency measuring device, it was easy to apply a maximum power point tracking (MPPT) algorithm. In addition, a load dispersion method was applied to measure the efficiency of a high-capacity solar panel. and it is possible to solve a problematic thermal runaway during a MOSFET parallel operation by applying the load dispersion method. As a result of the experiment, the solar panel efficiency measuring device was able to accommodate a large solar panel of 350W, which is the maximum measurement goal. In this paper, the validity was confirmed through the 310W solar panel efficiency measurement experiment collected after removal.