• Title/Summary/Keyword: Solar shade

Search Result 69, Processing Time 0.023 seconds

Global Maximum Power Point Tracking Method of Photovoltaic Array using Boost Converter (부스트 컨버터를 이용한 태양전지 어레이 전역 최대전력 점 추종 방법)

  • Hwang, Dong-Hyeon;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.216-223
    • /
    • 2018
  • Since solar cells have non-linear voltage-current output characteristics, Photovoltaic systems require the Maximum Power Point Tracking(MPPT) function. For this reason, a large number of MPPT techniques have been studied. However, the conventional MPPT techniques may fail to track the maximum power point when partial shading occurs in the solar cell array due to its characteristics. Therefore, it is necessary to research the MPPT technique that can follow the maximum power point in the partial shadow condition. In this paper, the characteristics of solar cell arrays in partial shadowing are analyzed and the MPPT technique which can follow the maximum power point in partial shadow condition has been proposed. To validate the proposed MPPT method, simulation and experimentation results are provided.

A Study on the Lighting Energy Performance Analysis of a Shading Device based on Visual Comfort (시각적 쾌적성을 고려한 차양장치의 조명에너지 성능 분석 방법에 관한 연구)

  • Oh, Min-Seok;Lee, Ju-Yoon;Kim, Gi-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.1-14
    • /
    • 2018
  • The shading device on the window of the building can be an passive solution to reduce the cooling load and lighting energy, as well as improving the indoor comfort. It is also an architectural element that must be considered for building energy-efficient buildings such as eco-buildings and zero-energy buildings. However, due to various building environments and various shading devices, the installation of excessive shade may lead to the risk of losing the effectiveness of windows. In this study, we propose a method for optimal automatic control of shading device and evaluate its effectiveness by energy analysis of several shading devices.

Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl

  • Kim, Suyeon;Yi, Yu;Hong, Ik-Seon;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Moon mineralogy mapper ($M^3$)'s work proved that the moon is not completely dry but has some hydroxyl/water. $M^{3{\prime}}s$ data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using $M^3$ data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.

Improvement of the Power Generation of Photovoltaic Generation System using Rotating Reflector (회전 반사판을 이용한 태양광발전장치의 발전량 향상)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.157-162
    • /
    • 2020
  • In the existing photovoltaic generation system, the system equipped with the reflecting plate is a method in which solar energy (insolation) is concentrated on the surface of the photovoltaic module. However, the solar energy (insolation) lost by being reflected back through the solar module is not considered. Although a method of increasing the amount of power generated by installing a reflector around the solar modules has been proposed, this affects the power generation degradation caused by the shading of other solar modules. Therefore, in order to improve this problem, in this paper, 1) without affecting the development of photovoltaic module according to the shade, 2) photovoltaic module using a reflector rotating the solar energy (insolation) lost by the solar module Study and suggest how to join again. Therefore, the loss of solar energy (insolation) can be minimized through the method of recycling the solar energy according to the countless reflection angle of the lost solar energy (insolation). As a result, it is possible to increase the amount of power generation of the photovoltaic generation system by maximizing the amount of power generation for the same solar radiation.

Development of Control Software for Daylight Responsive Dimming Systems and Automated Roller Shading Systems (광센서 조광제어시스템과 자동롤러쉐이딩 시스템을 위한 제어 소프트웨어 개발)

  • Hong, Seong-Kwan;Kim, Yu-Sin;Park, Byoung-Chul;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.149-152
    • /
    • 2008
  • The purpose of this study is to develop a control software for daylight responsive dimming systems and automated roller shading systems. Developed software in this study is to used determinate sky conditions, calculation of solar profile angle, control height of roller shade, calculation of dimming level(%) for daylight responsive dimming systems.

  • PDF

Effect of Cucumber(Cucumis sativus) Growth on Mobile Shading according to Solar Radiation in Greenhouse during Summer (여름철 시설재배에서 일사량에 따른 수시차광이 오이 생육에 미치는 영향)

  • Woo, Y.H.;Cho, I.H.;Lee, K.H.;Hong, K.H.;Oh, D.G.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • Use of mobile shading helps ameliorate heat stress of cucumber in greenhouse during summer. The mobile shading according to solar radiation may be optimal to produce high-quality cucumber in greenhouse during summer. Simultaneous comparison was made among greenhouse sections that were either not shaded or covered with reflective aluminized shadecloth that shaded 40%, or 90% of direct sunlight. Solar radiation amount, soil temperature, difference in leaf temperature and air temperature, and air temperature were lower, and relative humidity was higher as shade level increased. With increased shade level, photosynthesis rate, leaf area, fresh weight, dry weight, and number of marketable fruits increased. The mobile shading of 90% when the outer sunlight was above 650W·m-2 yielded favorable growth environment in greenhouse of cucumber during summer.

Solar Access and Shading Analysis of Traditional Building Using a Solar Trajectory Meter (태양 궤적 측정기를 이용한 전통 건축물 음영 분석)

  • Kim, Myoung Nam;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.90-100
    • /
    • 2021
  • Outdoor cultural buildings and their accessories receive different amounts of solar radiation depending on their location's latitude, azimuth, and tilt. Shading is also affected by the surrounding terrain and objects, necessitating individual and quantitative shading analysis. In July 2019, this study conducted a shading analysis on the tops, midpoints, and bottoms of wooden pillars in the azimuth of Cheongpunggak, a traditional building in South Korea's National Research Institute of Cultural Heritage. The shading analysis found that the solar access/shade predicted by the solar trajectory meter was 30 minutes slower than measured in the field. The highest solar access and solar radiation levels came from the south, followed by the west, east, and north. The pillars' bases received the highest solar access and solar radiation, followed by their midpoints and tops. Solar access was high at tilt 90°, but solar radiation was high at tilt 0°, due to the light-collection efficiency and the irradiance. Shading on the pillars' tops was caused by the roof eaves, while shading on the midpoints and bases were affected by the surrounding pillars, topography, and other objects. Simultaneous solar access at the tops, midpoints, and bottoms was possible for 365 days for the northwest, west, and southwest pillars but only from October to March for the south and southeast pillars.

An Analysis of Permanantly Shaded Areas and the Defect Rate of Landscape Trees in Apartment Complexes Using Daylight Simulations

  • Park, Sang Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide basic data on trees that can be used for planting design and construction for permanently shaded areas by grasping the growth status of trees according to the daylight conditions of the outdoor spaces of apartment complexes. Methods: On the recently completed apartment complexes, daylight conditions were analyzed by using daylight simulations utilizing Solar Access Analysis of Ecotect Analysis. With a criteria for assessment of tree condition, the defect rate of trees planted in permanently shaded areas and green spaces with good daylight conditions was analyzed to suggest trees applicable to permanently shaded areas. The first tree survey was conducted from November 18, 2019 to February 15, 2020, focusing on trees planted in permanently shaded areas, and the second tree survey of all the trees planted on the study sites including permanently shaded areas was conducted from March 16 to March 30, 2020. Results: Evergreen trees which are classified as shade intolerant trees including Pinus densiflora, Thuja occidentalis, and Abies holophylla showed a higher defect rate of trees among the trees planted in permanently shaded areas. Taxus cuspidata, Zelkova serrata, Cornus kousa, Chionanthus retusus and Acer palmatum which are classified as shade tolerant trees and shade moderate tolerance trees seemed to be able to be used in the plant design of permanently shaded areas in apartment complexes because the trees showed good growth and a low tree defect rate. In addition, although it was excluded from the analysis due to a small number of samples, Sorbus commixta and Prunus cerasifera var. atropurpurea also can be used for planting in permanently shaded areas. Conclusion: The daylight simulation technique used to analyze permanent shaded areas in this study can be used as an analysis tool considering the daylight environment at the stages of design and construction, and additional research will be required to analyze tree growth according to daylight conditions through data accumulation and monitoring by managing records throughout the entire life cycle of trees in the process of planting and maintenance.

An analysis methodology for the power generation of a solar power plant considering weather, location, and installation conditions (입지 및 설치방식에 따른 태양광 발전량 분석 방법에 관한 연구)

  • Byoung Noh Heo;Jae Hyun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • The amount of power generation of a solar plant has a high correlation with weather conditions, geographical conditions, and the installation conditions of solar panels. Previous studies have found the elements which impacts the amount of power generation. Some of them found the optimal conditions for solar panels to generate the maximum amount of power. Considering the realistic constraints when installing a solar power plant, it is very difficult to satisfy the conditions for the maximum power generation. Therefore, it is necessary to know how sensitive the solar power generation amount is to factors affecting the power generation amount, so that plant owners can predict the amount of solar power generation when examining the installation of a solar power plant. In this study, we propose a polynomial regression analysis method to analyze the relationship between solar power plant's power generation and related factors such as weather, location, and installation conditions. Analysis data were collected from 10 solar power plants installed and operated in Daegu and Gyeongbuk. As a result of the analysis, it was found that the amount of power generation was affected by panel type, amount of insolation and shade. In addition, the power generation was affected by interaction of the installation angle and direction of the panel.

A Study on Module-based Power Compensation Technology for Minimizing Solar Power Loss due to Shaded Area (음영지역 발생으로 인한 태양광 발전손실 최소화를 위한 모듈부착형 전력보상기술에 관한 연구)

  • Kim, Young-Baig;Song, Beob-Seong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.539-546
    • /
    • 2018
  • Recently, as the solar power generation market is rapidly increasing, interest is focused on research for minimizing the output of the solar cell module. The role of the power optimizer is important when inconsistencies occur in photovoltaic power generation. In the conventional system, centralized inverter method and microinverter method are mainly used. In this paper, we analyze the problem of power generation efficiency loss due to the incompatibility of existing system configuration methods. We also proposed a module - type power compensation method that can improve the mismatch caused by shading. The proposed module - based power optimizer is implemented and compared with the existing operation method. From the simulation result, it was confirmed that the efficiency of the proposed operation method is improved compared to the existing method.