• Title/Summary/Keyword: Solar ribbon

Search Result 37, Processing Time 0.022 seconds

The comparison of maximum output power of PV module by solar cell breakage (PV 모듈에서 셀의 파손에 따른 전기적 출력 특성 비교)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.9-10
    • /
    • 2007
  • In this paper, we investigated the effect of solar cell breakage on maximum output power of PV module. The test result using artificial light source didn't give any change in output power in case of crack near electrical ribbon. Also, there was a reduction in output power in case of increasing of crack area far from electrical ribbon. But, this experiment is under artificial light source test method. So, when such a PV module is outdoor for a long time, there would be problems on electrical output power and durability because of thermal aging phenomenon of solar cell breakage.

  • PDF

Improving Efficiency of Low Cost EFG Ribbon Silicon Solar Cells by Using a SOD Method (SOD방법을 이용한 저가 EFG 리본 실리콘 태양전지의 효율 향상에 관한 연구)

  • Kim, Byeong-Guk;Lim, Jong-Youb;Chu, Hao;Oh, Byoung-Jin;Park, Jae-Hwan;Lee, Jin-Seok;Jang, Bo-Yun;An, Young-Soo;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.240-244
    • /
    • 2011
  • The high cost of crystalline silicon solar cells has been considered as one of the major obstacles to their terrestrial applications. Spin on doping (SOD) is presented as a useful process for the manufacturing of low cost solar cells. Phosphorus (P509) was used as an n-type emitters of solar cells. N-type emitters were formed on p-type EFG ribbon Si wafers by using a SOD at different spin speed (1,000~4,000 rpm), diffusion temperatures ($800^{\circ}C{\sim}950^{\circ}C$), and diffusion time (5~30 min) in $N_2+O_2$ atmosphere. With optimum condition, we were able to achieve cell efficiency of 14.1%.

Characterization of Low-temperature Conductive Films Bonded PV Modules and Its Field Test (저온 전도성 필름으로 본딩된 태양광 모듈의 특성 평가 및 실증 연구)

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yang, Yeon-Won;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • In this paper, PV modules using a low-temperature conductive film(LT-CF) as a bonding material between a cell and a solder free ribbon were produced and chracterized, which is more environmental-friendly, cost effective and high efficient. Mainly, filed electrical performance of PV modules using three different types of bonding material; a convetional solder ribbon(SR), a LT-CF and a light-capturing Ribbon(LCR) were compared to comfirm the feasibility of LT-CF as a bonding material. The filed test were conducted for 3 months and results were discussed in terms of amount of output energy production and efficiency.

The Analysis of missmatch with resistance on Si-PV module (결정질 태양전지 모듈 내부 저항의 Missmatch 분석)

  • Ji, Yang-Geun;Kong, Ji-Hyun;Kong, Gi-Hwan;Yu, Gwon-Jong;Won, Chang-Sub;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.98-103
    • /
    • 2009
  • In this paper, we test the electrical resistance of flat wire in the PV module. normally solar cell has two kind of flat wire(inter connection ribbon and bus bar ribbon). we found the phenomenon that has a unbalance with resistance when we make a wiling between of string. So, we measurement the resistance of flat wire each other. and analysis of missmatch with resistance between flat wires on PV module. next to survey of IR picture on missmatch flat wire samples for analyze of missmatch with current in the wire. and we perform IR test with solar cell that has a connection with flat wire for test the effect of missmatch resistance on solar cell. Finally we perform the Dark I-V test for survey of effect by the unbalance of resistance. By the result of Dark I-V test, the series resistance of existing connection sample is large more then innovated connection sample.

  • PDF

The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions (태양전지 Ribbon 두께와 조성에 따른 Ribbon접합부의 장기 신뢰성 특성에 관한 연구)

  • Jeon, Yu-Jae;Kang, Min-Soo;So, Kyung-Jun;Lee, Jae-June;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.88-94
    • /
    • 2014
  • In this paper, Thermal Shock tests were performed varying the composition of the solder and ribbon thickness (A-type:0.2mm/60Sn40Pb, B-type:0.25mm/60Sn40Pb, C-type:0.2 /62Sn36Ag2Pb, D-type:0.25mm/62Sn36Ag2Pb) for evaluating the long-term reliability about Ribbon junction of Silicon solar cells. Thermal Shock test condition was performed during the 600cycles having $-40^{\circ}C{\sim}85^{\circ}C$ temperature range each 15 minutes; One cycle time was 30min. As a result, the initial efficiency of the A-type, B-type, and C, D-type were showed 15.0%, 15.4% and 15.8% respectively. After thermal shock test, the efficiency decreasing-rate of each type were as follow that A-type was 13.8%, B-Type was 15.4%. C-Type and D-Type was 15.3% and 16.2%, respectively. Also, degradation of surface changes and I-V characteristic curves were showed that the series resistance of the A, C-type was increased. Also, current lowering starting point of C-type shown 0.05volt[v] earlier than that of A-type. And B, D-type shown characteristics of composite lowering efficiency such as increase of series resistance, decrease of parallel resistance and cell damage. Therefore Initial solderability and efficiency of specimens using the solder with SnAgPb were superior. But, It has inferior the long-term reliability. The test was confirmed that as the ribbon thickness increases, long-term reliability of solar cell will decrease.

Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules (See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술)

  • Min-Joon Park;Sungmin Youn;Minseob Kim;Eunbi Lee;Kiseok Jeon;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste (전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

The Research on Performance of PCB type of Solar cell BusBar Formed by Layer Structure (적층구조로 형성된 PCB형 태양전지용 BusBar의 성능에 관한 연구)

  • Jeon, Taeg-Jong;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.102-107
    • /
    • 2012
  • The purpose of thesis is to improve output of solar cell module by enhancing transmission efficiency. To improve transmission efficiency, transmission interconnection ribbon which is used to connect solar cells and busbar which contacts with it has been improved. To secure reliability, comparison research on output of solar cell modules has been conducted by manufacturing PCB module formed by laminated metal with the same output. The result of this research is based on a output efficiency test of modules by comparing electric conductivity of soldering busbar and laminated PCV type of busbar.

  • PDF

Optimizing Surface Reflectance Properties of Low Cost Multicrystalline EFG Ribbon-silicon (저가 다결정 EFG 리본 웨이퍼의 표면 반사도 특성 최적화)

  • Kim, Byeong-Guk;Lee, Yong-Koo;Chu, Hao;Oh, Byoung-Jin;Park, Jae-Hwan;Lee, Jin-Seok;Jang, Bo-Yun;An, Young-Soo;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2011
  • Ribbon silicon solar cells have been investigated because they can be produced with a lower material cost. However, it is very difficult to get good texturing with a conventional acid solution. To achieve high efficiency should be minimized for the reflectance properties. In this paper, acid vapor texturing and anti-reflection coating of $SiN_x$ was applied for EFG Ribbon Si Wafer. P-type ribbon silicon wafer had a thickness of 200 ${\mu}m$ and a resistivity of 3 $\Omega-cm$. Ribbon silicon wafers were exposed in an acid vapor. Acid vapor texturing was made by reaction between the silicon and the mixed solution of HF : $HNO_3$. After acid vapor texturing process, nanostructure of less than size of 1 ${\mu}m$ was formed and surface reflectance of 6.44% was achieved. Reflectance was decreased to 2.37% with anti-reflection coating of $SiN_x$.

Two-Ribbon Filament Eruption on 29 September 2013

  • Kim, Yeon-Han;Bong, Su-Chan;Lee, Jaejin;Cho, Il-Hyun;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • We have presented a classic two-ribbon filament eruption occurred in the east side of NOAA active region 11850 at 21:00 UT on 29 September 2013. Interestingly, this filament eruption was not accompanied by any flares and just there was a slight brightening in X-rays, C1.2, associated with the eruption. An accompanying huge CME was appeared at 22:12 UT in the LASCO C2 field of view and it propagates into the interplanetary space with a speed of about 440 km/s. And the related solar proton event (S2) started at 05:05 UT and peaked at 20:05 UT on 30 September 2013. The CME arrival was recorded by the ACE spacecraft around 01:30 UT on 2 October 2013. Around the CME arrival time, the solar-wind speed reached at about 640 km/s and IMF Bz showed southward component (-27 nT). Finally, the filament eruption and the CME cause geomagnetic storm (G2) at 03:00 UT on 2 October 2013. We described the detailed evolution of the filament eruption and its related phenomena such as CME, proton event, geomegnetic storm and so on. In addition, we will discuss about the activation mechanism of the filament eruption without flares.

  • PDF