• Title/Summary/Keyword: Solar photovoltaic

Search Result 1,965, Processing Time 0.025 seconds

A Detail Survey of Horizontal Global Radiation and Cloud Cover for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 운량 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982. 12~2008. 12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61\;kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

A Study on the Application Strategies of Renewable Energy Systems Considering Layout and Block Plan in Apartment Building (공동주택의 배치 및 블록별 재생에너지 시스템의 적용성에 관한 연구)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.79-87
    • /
    • 2006
  • This study aims to presents the applicability of apartment building for renewable energy systems using method of uncomplicated calculation and computer simulation. According to the weather conditions (NASA Surface meteorology and Solar Energy) analysis, it has been found that photovoltaic and wind power system can be applied to apartment buildings application. In case study considering layout and block plan, adaptation of solar water heating, photovoltaic and wind energy system to apartment buildings was proved to produce a profit. And the application strategies of renewable energy systems can be used not only for the investment decisions for economic analysis but also for the comparative analysis of uncomplicated calculation and computer simulation.

Advances in High Efficiency Back Contact Back Junction Solar Cells

  • Balaji, Nagarajan;Park, Cheolmin;Raja, Jayapal;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • In the past few decade's researchers, scientists, engineers of photovoltaic (PV) industry are working towards low cost high efficiency Si solar cells. Over the last decade the interest in back contact solar cell has been acquiring as well as a gradual introduction to industrial applications is increasing. As an alternative to conventional solar cells with a front and rear contact, the back-contact cells has remained a research topic. The aim of this work is to present a comprehensive summary of results incurred in the back contact back junction solar cells such as interdigitated back-contact (IBC), emitter wrap-through (EWT) and metallization wrap-through (MWT) over the years.

A Detailed Survey of Solar Energy Resources in East-North Asia Areas Using a Satellite (Focused on the Analysis of Chinese Areas) (인공위성을 이용한 동북아시아 지역의 태양광자원 정밀조사 (중국지역 분석을 중심으로))

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 2007
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here is the analysis of solar radiation data for East-North Asia areas. The data utilized in the analysis consist of the global radiation on horizontal surface, measured at 2 different stations during 3 years for the period from 2002 to 2004 and estimated using satellite at 27 different stations over the China and Mongolia. Also the measured data has been collected at 16 different stations all of the South Korea and estimated using satellite at 12 different stations over the North Korea from 1982 to 2005. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.57\;MJ/m^2$. We conclude, based on the analysis, that East-North Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

Variation of Solar Photovoltaic Power Estimation due to Solar Irradiance Decomposition Models (일사량 직산분리 모델에 따른 표준기상연도 데이터와 태양광 발전 예측량의 불확실성)

  • Jo, Eul-Hyo;Lee, Hyun-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.81-89
    • /
    • 2019
  • Long-term solar irradiance data are required for reliable performance evaluation and feasibility analysis of solar photovoltaic systems. However, measurement data of the global horizontal irradiance (GHI) are only available for major cities in Korea. Neither the direct normal irradiance (DNI) nor the diffuse horizontal irradiance (DHI) are available, which are also needed to calculate the irradiance on the tilted surface of PV array. It is a simple approach to take advantage of the decomposition model that extracts DNI and DHI from GHI. In this study, we investigate variations of solar PV power estimation due to the choice of decomposition model. The GHI data from Korea Meteorological Administration (KMA) were used and different sets of typical meteorological year (TMY) data using some well-known decomposition models were generated. Then, power outputs with the different TMY data were calculated, and a variation of 3.7% was estimated due to the choice of decomposition model.

Current-Voltage Measurement Behavior of the CIGS Solar Module through the Evaluation of KS C 8562 Standard (KS C 8562 평가를 통한 CIGS 태양광모듈의 출력 거동 분석)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • CIGS solar cells are thin film solar cells that have excellent light absorption coefficient and can be manufactured with high efficiency through the use of low materials. In Korea, they must pass KS certification for home and commercial installation. KS C 8562 is a standard for evaluating the durability of CIGS and thin film amorphous silicon solar modules and deals with contents such as light, temperature, humidity, and mechanical durability. Unlike general crystalline silicon solar modules, the CIGS solar module has a different behavior of output change through these environmental tests, so if it shows 90% or more of the rated output suggested by the manufacturer after the final test, it is judged to be a suitable product. In this paper, the output before and after individual tests was measured through the test method of KS C 8562 to observe the output change and to discover the vulnerabilities of the CIGS solar module when exposed to various environments. Through this, it was confirmed that humidity exposure was the most vulnerable and that it had output recovery characteristics for light (visible light and ultraviolet rays). This study attempted to present the output behavior characteristics and data of the CIGS module at the time when the high efficiency thin film photovoltaic module market is expected to be created in the future.

Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells (셀 표면의 충돌제트를 이용한 태양광발전 시스템 효율향상에 관한 연구)

  • Yoo, Sang-Phil;Jin, Joo-Seok;Kim, Hyuk-Kyun;Kim, Yi-Hyun;Jeong, Seong-Dae;Seo, Yong-Seo;Jeong, Nam-Jo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.241-244
    • /
    • 2009
  • This study is focused on the improving effectiveness of a photovoltaic system. The characteristic of crystalline silicon solar cells, that 0.5% reduction in generating power is occurred by increasing temperature $1^{\circ}C$ of module. Typically, average solar generating power is higher spring and fall than summer. Degradation phenomena shall shorten the life of the module when the temperature of modules is $70^{\circ}C$. Decreasing temperature 40degree of the module and increasing the solar power 20% was presented using the water impinging jet method on the surface of photovoltaic cells. It is shown that Impinging jet have an effected on heat and deliver effective substance from the area in which the injection is effective.

  • PDF

Suggestion of PV Module Test Methods Based on Weathering Monitoring (기후데이터 분석을 통한 태양광모듈의 내구성 평가 기준 제안)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.46-50
    • /
    • 2019
  • The photovoltaic (PV) system consists of solar cells, solar modules, inverters and peripherals. The related evaluation and certification are proceeding as standards published by the IEC (International Electrotechnical Commission) TC (Technical Committee) 82. In particular, PV module is a component that requires stable durability over 20 years, and evaluation in various external environments is very important. Currently, IEC 61215-based standards are being tested, but temperature, humidity, wind and solar radiation conditions are not considered in all areas. For this reason, various types of defects may occur depending on the installation area of the same photovoltaic module. In particular, the domestic climate (South Korea) is moderate. The various test methods proposed by IEC 61215 are appropriate, excessive, or insufficient, depending on environmental condition. In this paper, we analyze the climate data collection for one year to understand the vulnerability of this test method of PV modules. Through this, we propose a test method for PV module suitable for domestic climatic conditions and also propose a technical consideration for installation and design of PV system.