• Title/Summary/Keyword: Solar module

Search Result 737, Processing Time 0.029 seconds

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

Soldering Process of PV Module manufacturing and Reliability (태양전지 모듈의 솔더링 공정에 대한 신뢰성)

  • Kim, S.J.;Choi, J.Y.;Kong, J.H.;Moon, J.H.;Lee, S.H.;Shim, W.H.;Lee, E.H.;Lee, E.J.;Lee, H.S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • Although PV module manufacturing and its structure are simple, the semi-permanent products can be used out doors for more than twenty years. Therefore it is need to choose proper materials and optimize manufacturing process. This paper suggest that factors of degradation need to be studied to achieve a more understanding of PV module Degradation rates and material failure. Nowadays durability of the PV Module is very important to sustain output safety for obtaining reliability. This paper is about the experiment that soldering uniformity of soldering process and to make least void from soldering process. From This study soldering flux residue and soldering method is main factor to form void blocked soldering uniformity and by using this.

  • PDF

Modeling of Solar Radiation Using Silicon Solar Module

  • Kim, Joon-Yong;Yang, Seung-Hwan;Lee, Chun-Gu;Kim, Young-Joo;Kim, Hak-Jin;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Purpose: Short-circuit current of a solar module that is widely used as a power source for wireless environmental sensors is proportional to solar radiation although there are a lot of factors affecting the short-circuit current. The objective of this study is to develop a model for estimating solar radiation for using the solar module as a power source and an irradiance sensor. Methods: An experiment system collected data on the short-circuit current and environmental factors (ambient temperature, cloud cover and solar radiation) during 65 days. Based on these data, two linear regression models and a non-linear regression model were developed and evaluated. Results: The best model was a linear regression model with short-circuit current, angle of incidence and cloud cover and its overall RMSE(Root Means Square Error) was 66.671 $W/m^2$. The other linear model (RMSE 69.038 $W/m^2$) was also acceptable when the cloud cover data is not available.

A Study on Application of New & Renewable Energy for Environmental-friendly Planning of Rural Villages - Analysis of Solar Energy Resources - (친환경 농촌마을계획을 위한 재생에너지 활용방안 연구 - 태양에너지 자원분석 -)

  • Nam, Sang-Woon;Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.105-112
    • /
    • 2008
  • Solar energy, which is one of renewable energy, would be the most useful resources that can be applied to making energy recycling villages without using fossil energy. This study analyzed energy potential on solar energy considering weather condition in three traditional villages and compared with energy consumption surveyed. A photovoltaic system having 3.0kWp capacity of unit module can generate 182.5%, 96.1% and 170.9% of the yearly mean consumption of electric power in Makhyun, Boojang, and Soso, respectively. A flat-plate solar collector having $2.64m^2$ area of unit module can generate warm water of $142{\ell}$/day, $89{\ell}$/day, and $173{\ell}$/day, respectively in three study villages. In Makhyun and Soso, photovoltaic power and warm water produced by solar energy were sufficient to supply required amount of electric power and warm water. However, both electric power and warm water produced by unit solar module were not sufficient in Boojang area, and so it is required to increase the module area by more than 50%. According to the results of this study, the appropriate combination of energy resources can be applied to rural green-village planning if the characteristic of energy potential for each local area is considered.

Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module (슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향)

  • Lee, Seong Eun;Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

A study on development of large area/mass production system for flexible solar cell (유연태양전지 대면적/대량 생산시스템 개발에 관한 연구)

  • Bae, Sungwoo;Jo, Jeongdai;Kim, Dongsoo;Yoo, Seongyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resource is being depleted. Especially, in order to solve like this problem, the study of solar cell manufacturing systems are being extensively researched such as vacuum process. But the major fault of the vacuum process are its expensive production price. On the order hand, Roll-to-roll printing system, the new technology of solar cell manufacturing, has low production price compare with the vacuum process. Also roll-to-roll printing system can decrease the 95% of waste water and 99.9% of harmful gasses than the vacuum process. So we addressed the roll to roll printing system for the flexible solar cell by using printing technology. This roll-to-roll printing system is comprised of various modules, such as web handling module, fine pattern printing module, dry/curing module, uniform coating module and laminating module etc.

  • PDF

Characteristic Evaluation of Bifacial Solar Module Power Plant Using Back Sheet as Reflective (백시트를 반사재로 이용한 양면태양광 발전시스템 특성평가)

  • Kim, Hyun Jun;Jho, Min Jae;Cha, Hyang Woo;Kim, Kwang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.112-116
    • /
    • 2022
  • The demand for a rear reflective material is continuing according to the expansion of the bifacial soar module and the effect on the re-reflection of the ground using a back sheet that is not used due to the increase in the supply of the bifacial solar module was confirmed. For analysis, a bifacial solar module with an output of 445W was connected to a single inverter of 49.84kW, and analysis of each two inverters was carried out. In the analysis of the results, it was confirmed that the generation amount increased by 5.25% compared to the case where the back sheet reflective film was not installed and it was confirmed that the increase in the generation amount was the noon time when strong solar radiation was irradiated, not the time of sunrise and sunset.

Analysis of Solar Simulator's Uncertainty Factor for Photovoltaic Module's I-V curve test (PV모듈의 I-V특성 시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.5-7
    • /
    • 2006
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.75W$ with 95% confidence level for 125W PV module.

  • PDF

I-V Characteristics According to the Module Temperature (모듈온도에 따른 전압-전류 특성)

  • Jung, Yoo-Ra;Park, Sang-Jun;Hwang, Seung-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2150_2151
    • /
    • 2009
  • Solar, as an ideal renewable energy, has inexhaustible, clean and safe characteristics. However, solar energy is an extreme intermittent and inconstant energy source. In order to improve the photovoltaic system efficiency and utilize the solar energy more fully, and the DC current vary with module temperature, it is necessary to study the characteristics of photovoltaic I-V according to the external factors. This paper presents the analysis of characteristics of photovoltaic I-V according to the module temperature. The results show that it seems that when the module temperature increases, the DC current increases. But actually, because when the irradiation increases, the DC current increases, the result of the relationship between DC current and the module temperature of solar cell will be effects by the increasing irradiation.

  • PDF

Analysis of Module Mismatch Loss in Solar PV String and Feasibility Study for Improvement Method (태양광 PV 스트링에서의 모듈 부정합 손실의 분석 및 개선 기법 타당성 연구)

  • Ahn, Hee-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • In this paper, the power loss due to PV module mismatch in PV string is analyzed and a mismatch compensation method is proposed to improve the efficiency of PV system. The analysis of mismatch loss using PV model simulation reveals that the mismatch module may decrease the total efficiency because the MPPT function of power conditioner make the PV system operate at the local maximum point. The mismatch loss can be severe if the maximum power point current of mismatch module is less than that of string. The proposed compensation method which is simply implemented with a buck type converter shows the possibility to remove the mismatch loss. The effectiveness of the analysis and compensation method is verified by a prototype experiment.