• Title/Summary/Keyword: Solar irradiance

검색결과 237건 처리시간 0.026초

Characteristics of Environmental Solar Ultraviolet Irradiance

  • Sasaki, Masako;Oyanagi, Takehiko;Takeshita, Shu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.154-157
    • /
    • 2002
  • Direct, continuous, and accurate measurements of solar ultraviolet irradiance (290-400 nm: UVR) have been carried out since 1990, by using both band-spectral ultraviolet-B (290-320 nm: UV-B) and ultraviolet-A (320-400 nm: UV-A) radiometers at Tokai University in Hiratsuka, Japan (35$^{\circ}$N, 139$^{\circ}$E). From our observations, the following findings are provided: 1) an increasing trend in solar UV -B from Oct. 1990 to Sept. 2000; 2) a regional comparison of solar UVR in Japan; 3) the distinct characteristics of UV-B and UV-A irradiance, such as diffuse property, daily and seasonal variation; and 4) human body protection against solar UVR. An increasing 10-year trend in global solar UV - B in Hiratsuka corresponded to a decrease in the total ozone amount measured at Tsukuba (36$^{\circ}$N, 140$^{\circ}$E), giving supportive evidence for a direct link between these two parameters. Furthermore, a strong correlation was found between solar UV-B and total ozone amount from results of UVR measurements at four Tokai University monitoring stations dispersed throughout Japan. Additional results revealed different diffuse properties in global solar UV and in global solar total (300-3000 nm: Total) irradiances. For example, in the global UVR, the diffuse component was dominant: about 80 % independent of weather, with more than 60 % of global UV-B, and more than 50% of global UV-A with even a cloudless clear sky. On the other hand, the portion of the diffuse in the global total irradiance was very low, less than 10 % on a cloudless clear day. Daily and seasonal variations of UV -B and UV -A irradiances were found to be quite different, because of the marked dependence of UV -B irradiance on the atmospheric ozone amount. Moreover, UV -B irradiance showed large daily and seasonal variations: the ratio between maximum and minimum irradiances was more than 5. In contrast, the variation in UV-A was small: the ratio between maximum and minimum was less than 2. Three important facts are proposed concerning solar UVR protection of the human body: 1) the personal minimal erythema dose (MED); 2) gender based difference in MED values; and 3) proper colors for UVR protective clothing.

  • PDF

천공구분에 따른 서울지역 일사의 발광효율 측정 및 예측모델과의 비교 연구 (Comparison of Measurement and Calculation Model of Solar Luminous Efficacy for All Sky Conditions in Seoul)

  • 윤갑천;윤경;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.86-94
    • /
    • 2011
  • For accurate dayligh tsimulation, accurate exterior illuminance is necessary. But, Korea Meteorological Agency provides only the solar irradiance data. Thus, there is a need for the research on luminous efficacy. In this study, global horizontal irradiance, diffuse horizontal irradiance, global horizontal illuminance, and diffuse horizontal illuminance were measured to calculate the luminous efficacy in SEOUL. And, we evaluated the applicability of the Perez's model by comparing the measured data and calculated data. As a result, measured global luminous efficacy is 126(110~129)lm/W and diffuse luminous efficacy is 127(115~133)lm/W in Seoul. Perez's model was relatively accurate with 5% difference in the diffuse luminous efficacy. But, it can be predicted about 15% lower in the global luminous efficacy.

고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가 (Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution)

  • 김창기;김현구;강용혁;김진영
    • 한국태양에너지학회 논문집
    • /
    • 제40권5호
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

수은-할로겐 램프 조합방식 삼파장 솔라뱅크 개발에 관한 연구 (A Study on the Development of Three Wavelength Solar Bank By Mercury-Halogen Lamps Combination Method)

  • 이재명;백상화;박소진
    • 공업화학
    • /
    • 제10권8호
    • /
    • pp.1147-1154
    • /
    • 1999
  • 솔라 시뮬레이터의 핵심이라 말할 수 있는 삼파장 솔라뱅크를 산업용으로 사용화된 수은등과 할로겐 램프를 조합하여 개발하였다. 이 솔라뱅크는 하절기 태양 빛의 최대 복사조도값인 $1120W/m^2$과 각 파장영역에서의 복사조도량 및 조사면적에 대한 복사조도의 ${\pm}10%$의 균일도 3가지를 동시에 만족하도록 고안되어졌다. 분광 복사조도의 측정을 위한 표준을 정하는 방법은 분광 복사휘도를 이용하였고, 측정된 분광 복사조도값을 토대로 솔라뱅크의 방향성, 입사거리, 램프간의 간격, 램프조합, 랩프개수 등을 고려하여 완전한 삼파장 솔라뱅크를 구현하였다. 삼파장 솔라뱅크의 성능 검증을 위하여 색도실험과 열전이실험을 수행하였으며, 실험결과 삼파장 솔라뱅크가 산업용 적외선 램프뱅크보다 색차와 열전이현상의 견지에서 더 우수함을 알 수 있었다.

  • PDF

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

XGBoost를 이용한 타지키스탄 일사량 예측 모델 (Modeling Solar Irradiance in Tajikistan with XGBoost Algorithm)

  • 노정두;나태유;강성승
    • 지질공학
    • /
    • 제33권3호
    • /
    • pp.403-411
    • /
    • 2023
  • 본 연구는 XGBoost를 이용하여 타지키스탄의 일사량을 예측하여 타지키스탄의 재생에너지 자원으로서 복사 태양에너지의 활용 가능성을 평가하기 위함이다. 첫째, 타지키스탄의 일사량을 훈련모델, 검증모델, 시험모델을 통해 예측한 결과, 시간과 계절에 따른 일사량의 계절성이 실제값과 예측값 모두에서 뚜렷하게 구분되는 것을 확인하였다. 둘째, 타지키스탄의 2016, 2017, 2018, 2019년 등 각 연도의 7월 1일 시간당 일사량의 실제값과 예측값을 계산한 결과, 2016년 일사량의 최대 실제값과 예측값은 약 1,005 W/m2과 1,009 W/m2, 2017년에는 939 W/m2과 997 W/m2, 2018년에는 1,022 W/m2과 1,012 W/m2, 2019년에는 1,055 W/m2과 1,019 W/m2으로 나타났으며, 실제값과 예측값의 오차가 약 0.4~5.8%로 매우 비슷한 결과를 보였다. 결과적으로 타지키스탄의 일사량을 예측하여 복사 태양에너지의 활용 가능성을 평가하는 데 있어 XGBoost가 매우 유용한 도구로 활용될 수 있을 것으로 판단된다.

2009년 7월 22일 부분일식 발생 시 기상요소의 변화 특성 (Effects on Meteorological Variables During the Partial Solar Eclipse Event of 22 July 2009 in Korea)

  • 전병일
    • 한국환경과학회지
    • /
    • 제20권8호
    • /
    • pp.1041-1048
    • /
    • 2011
  • The purpose of this study was to analyze the effects on meteorological variables in Seoul, Busan and Jeju during the partial solar eclipse event of 22 July 2009 in Korea. Solar irradiance decreased 16 and 19 minutes after eclipse in Seoul and Busan, and 6 minutes before eclipse in Jeju. Minimum solar irradiance occurred 7 and 3 minutes after maximum eclipse in Seoul and Busan, respectively, and 8 minutes before maximum eclipse in Jeju. Solar irradiance began to increase after maximum eclipse in Seoul and Busan, and recovered to the original state as eclipse ended. On the other hand, recovery of solar irradiance after maximum eclipse in Jeju was slower than those of two cities. Temperature drop due to partial solar eclipse were $0.7^{\circ}C$, $4.0^{\circ}C$, $1.5^{\circ}C$ in Seoul, Busan, and Jeju, respectively, and time needed to arrive minimum temperature from maximum eclipse were each 12, 32, 30 minutes, respectively. Change of relative humidity during partial solar eclipse were 2.6%, 17.4%, 12.3% in Seoul, Busan, and Jeju, respectively. Temperature drop turned out to be sharper as altitude increases. Wind speed decreased by each about 1.1 m/s, 3.4 ms/s, 1.4 ms/s due to partial solar eclipse in Seoul, Busan, and Jeju. Soil temperature of 5 cm equally decreased by $0.2^{\circ}C$ in Seoul and Busan, soil temperature of 10 cm maintained almost constant, and soil temperature of 20 cm was hardly affected by eclipse.

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

Measurement of Solar Cell Using LED-based Differential Spectral Responsivity Comparator under High Background Irradiance

  • Zaid, Ghufron;Park, Seong-Chong;Lee, Dong-Hoon;Park, Seung-Nam
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 동계학술발표회 논문집
    • /
    • pp.293-294
    • /
    • 2009
  • The spectral responsivity of solar cells has been measured under high background irradiance using an LED-based differential spectral responsivity Comparator (DSR-C). The comparator developed is fully automated and has some advantages: It does not need a chopper to modulate the light. Unlike the conventional method, it does not require a monochromator to select wavelength. It covers a wavelength range up to 1200 nm. The wavelength range of the comparator is limited by the spectral power distribution of the LEDs and the spectral responsivity of the standard detector. An active temperature control was utilized to meet the specified standard conditions of solar cell test. This work shows the effect of different levels of background irradiance on the spectral responsivity and the importance of same background irradiance for solar cell test as specified by the corresponding standard.

  • PDF

자연광 스펙트럼 분포에 의한 단결정 PV 모듈의 전기적 특성 (Electrical Characteristics of c-Si PV Module for the Spread of Natural Light Spectrum)

  • 홍종경;강기환;박지홍;정태희;류세환;화이티루 로렌스;안형근;한득영
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.193-198
    • /
    • 2009
  • Recently, characteristic research by the changes in the spectrum, one of the factors that influence analysis of maximum output power of PV module, has been studied. In this paper, a one-day intensity of solar irradiation, change of spectrums with time and electrical output for spectrums are analyzed. As a result, blue-rich wavelength compared with red-rich wavelength has large variation of solar irradiance with time, so we recognized that change of solar irradiance is dominated by variation of blue~rich wavelength. Also in same intensity of solar irradiance, electrical output in blue-rich wavelength was 3-8 % higher than one in red-rich wavelength.