• Title/Summary/Keyword: Solar insolation

Search Result 254, Processing Time 0.029 seconds

The Un-Manned Automated Weather(Insolation) Station at the Island "Dok-do" (무인자동 일사측정시스템의 개발 및 독도에서의 성능평가)

  • Lee, Tai-K.;Cho, Suh-H.;Jo, Dok-K.;Auh, P.Chung-Moo
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 1991
  • There are fifteen solar radiation measurement stations over the entire country in Korea. However, they are not capable of supplying reliable solar radiation data for remote areas including islands. The un-manned automated insolation measurement station is suitable for these areas due to the electric power shortage and the maintenance problems at these isolated areas. Our main aim in this work is to develop a solar radiation measurement system which collects and stores data by itself utilizing a PV module and a battery as power source for entire system irregardless of the environmental condition. A developed KIER's prototype system along with an independent HWS reference system has been installed at the designated remote island, Dok-do. Global solar radiation has been measured every hour for a 6-month period of time by both systems at this site. A comparison between the measured solar radiation data by each system indicates that there is an excellent agreement showing average 3.0% of an absolute error. It has been observed that the 8-month average global solar radiation was $2,330W/m^2$ day at this island. We came to the conservative conclusion that the developed KIER system is applicable for measuring solar radiation and for supplying reliable fundamental design data for solar energy utilization system at the remote areas.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Analysis of Effects on Topography for P-V System (태양광입지선정을 위한 지형분석방법 소개 및 영향분석)

  • Kim, Young-Deug;Ahn, In-Soo;Kim, Min-Su;Chang, Jeong-Ho;Chang, Moon-Soung
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • In design PV (photovoltaic) system, there are many important factors to consider for best site selection. It is essential to understand to know the amount of sunlight available and how to minimize the shadings. This study presents basic concepts for understanding sun's position and insolation. also it gives easy tools for topography analysis. Finally, this study shows some theoretical calculations of power generation losses by topographic obstacle's elevations and disadvantages in economic feasibility, that is about 7million won loss per year for case of 10 degree topography elevation with assuming average Korea's topography elevation as 5 degree.

  • PDF

Analysis of Effects on Topography forP-V system (태양광입지선정을 위한 지형분석방법 소개 및 영향분석)

  • Kim, Young-Deug;Ahn, In-Soo;Kim, Min-Su;Chang, Jeong-Ho;Chang, Moon-Soung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.87-90
    • /
    • 2008
  • In design PV(photovoltaic) system, there are many important factors to consider for best site selection. It is essential to understand to know the amount of sunlight available and how to minimize the shadings. This study presents basic concepts for understanding sun's position and insolation. also gives easy tools for topography analysis. Finally, this study shows some theoretical calculations of power generation losses and disadvantages in economic feasibility.

  • PDF

Insolation Phase of the Pyramids (피라밋의 일조특성(日照特性) 연구)

  • Lim, Choong-Shin
    • Journal of architectural history
    • /
    • v.1 no.1 s.1
    • /
    • pp.205-217
    • /
    • 1992
  • For all the variety of past studies on the pyramids of Old Kingdom of Egypt, they still basically remain in 'enigma and mystery' as Giedion rightly puts in. This paper deals directly with the three most obvious facts about the pyramids : their cardinal orientation, the varying slopes, and above all, their magnitude. The prominent triangles of their once polished faces were there to be seen from the Nile valley as they shined or shaded under the Sun. The northern faces, especially, went in and out of the Sun in accordence with the seasonal variation of the solar declination, The steeper northern faces which turned into shade in high summer noon could have been warning signs of oncoming inundation of Nile, and the milder slopes that suddenly began to shine in some early spring noons could have been the vernal alarms to awaken the peasants to their timely toil on the fresh land. Dates and hours of insolation on the northern faces of pyramids are graphically and numerically computed.

  • PDF

A dP/dV Feedback-Controlled MPPT Method for Photovoltaic Power System Using II-SEPIC

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.604-611
    • /
    • 2009
  • A dP/dV feedback-controlled MPPT (Maximum Power Point Tracking) method for photovoltaic power systems using II-SEPIC (Isolated Inverse-SEPIC; Single Ended Primary Inductance Converter) is presented and a current-mode dP/dV feedback-controlled MPPT method is devised to apply for the PV power converter system. A control strategy for the current-mode dP/dV feedback control system is developed in this paper and the proposed MPPT shows relatively satisfactory dynamics against rapidly changing insolation conditions. In order to verify the validity and effectiveness of the proposed method, simulations and experiments of the PV power system using II-SEPlC converter are performed. These simulation and experiment results show that the proposed method enables the PV power system to extract maximum power from the photovoltaic module against the solar insolation variation.

Experimental and mathematical evaluation of solar powered still equipped by nano plate as the principle stage of zero discharge desalination process

  • Jadidoleslami, Milad;Farahbod, Farshad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.147-161
    • /
    • 2016
  • To start with, finding a sustainable method to produce sweet water and electricity by using renewable energies is one of the most important issues at this time. So, experimental and theoretical analysis of the performance of a closed solar powered still, which is jointed to photovoltaic cells and vacuum pump and equipped by nano plate, as the principle stage of zero discharge desalination process is investigated in this project. Major goal of this work is to reuse the concentrated brine of the Mobin petrochemical complex in order to produce potable, sweet water from effluent saline wastewater and generating electricity in the same time by using solar energy instead of discharging them to the environment. It is observed the increase in brackish water temperature increases the average daily production of solar desalination still considerably. Therefore, the nano plate and vacuum pump are added to augment the evaporation rate. The insolation rate, evaporation rate, the average brackish temperature, ambient temperature, density are investigated during a year 2013. In addition to obtain the capacity of solar powered still, the highest and lowest amount of water and electricity generation are reported during a twelvemonth (2013). Results indicate the average daily production is increased 16%, which represents 7.78 kW.h energy saving comparing with traditional solar still.

A Study on the Analysis of Solar Radiation Characteristics on a High Elevated Area (고지대 일사량 특성분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • The purpose of this study is to procure basic data to be used for solar power plant and concentrating collector designs. Site elevation is one of the major factors which influences the incoming insolation to the earth surface. Because the nonpermanent gases such as ozone, water vapor are unmixed components of the atmosphere and their concentrations are the function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Jiri Mt. (1,400m) and in Gurye area(115m) at the near same latitude. These values were then compared to obtain their characteristics and to investigate the potential for the solar utilization for both high and low elevated areas. From the experimental results, we concluded that 1) Daily mean horizontal global radiation and normal beam radiation on Mt. Jiri are 9.5%, and 35.3% higher than Gurye area respectively for a clear day. 2) A significant difference in atmospheric clearness index is observed between Mt. Jiri and Gurye areas.