• 제목/요약/키워드: Solar hydrogen

검색결과 291건 처리시간 0.026초

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

가스화기술을 이용한 수소제조 기술 (Hydrogen Production by Gasification Technologies)

  • 윤용승
    • 에너지공학
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2004
  • 가스화기술은 전세계적으로 수소에너지 사회로 진입하는 과정에서 필요한 대량수소 공급체계를 구축하는데 중단기적으로 필요한 기술이다. 장기적으로는 풍력이나 태양광과 같은 순수한 재생가능에너지에 기반한 수소공급 체계로 발전될 것이나, 향후 10-20년간 대량수순 제조가 필요하다면 경제성이 있는 기술을 $CO_2$ 발생이 최소화되면서 효율도 높은 기술로 발전시켜 적용하는 방향으로 진행될 것이다. 특히, 국내에서는 천연가스, 석탄, 중질잔사유, 폐기물, 바이오매스 등의 원료로부터 출발한 수소제조가 경제적인 측면에서 유리하므로 최소한 중단기적으로는 활용될 것으로 보인다 수소에너지 이슈가 부각되는 배경중의 하나가 기후변화협약에 대응한 $CO_2$저감의 필요성이므로, 이들 중단기적으로 활용될 원료들의 수소제조기술들은 반드시 $CO_2$저감이 가능한 기술로서 개발되어야 한다.

일메나이트 상에서 광화학반응에 의한 유기물의 분해 (Decomposition of Organic Compound by Photo-Chemical Reaction on Ilmenite)

  • 최임규;하백현
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 1988
  • Photo-decomposition experiments to produce hydrogen from organic compound such as alcohols and organic acids were investigated using the Korean natural ilmenite, which was used as ore itself as well as the calcined in vacuum. The decomposition activities of alcohol on ore (30-60 mesh) which was not calcined did not decrease even if it was repeatedly used. But crushed ore which had newly formed ilmenite surface revealed enhanced activities. The ilmenite powder calcined in vacuum showed 3-8 times higher activies than the ore powder itself and also the decomposition activity of formic acid was much higher than that of alcohols.

  • PDF

HWCVD 계면 보호층을 적용한 실리콘 이종접합 태양전지 연구 (Silicon Heterojunction Solar Cell with HWCVD Passivation Layer)

  • 박상현;정대영;김찬석;송준용;조준식;이정철;최덕균;윤경훈;송진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.346-346
    • /
    • 2009
  • For high efficiency hetero junction solar cell over 20%, good silicon wafer passivation is one of the most important technological factor. Compared to the conventional PECVD technique, HWCVD has appeared as an promising alternative for high quality passivation layer formation. In this work, HWCVD passivation layer characteristics have been intensively investigated on wafer surface treatment, Hydrogen density in deposited thin layer and thermal effects in deposition process. Comprehensive results of the individual process factors on interface passivation has been discussed and resultant silicon hetero junction solar cell characteristics has been investigated.

  • PDF

수소 첨가에 의한 비정질 ITO 박막의 기계적 특성 연구 (Effect of Hydrogen on Mechanical S tability of Amorphous In-Sn-O thin films for flexible electronics)

  • 김서한;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.56-56
    • /
    • 2018
  • Transparent conductive oxides (TCOs) have attracted attention due to their high electrical conductivity and optical transparency in the visible region. Consequently, TCOs have been widely used as electrode materials in various electronic devices such as flat panel displays and solar cells. Previous studies on TCOs focused on their electrical and optical performances; there have been numerous attempts to improve these properties, such as chemical doping and crystallinity enhancement. Recently, due to rapidly increasing demand for flexible electronics, the academic interest in the mechanical stability of materials has come to the fore as a major issue. In particular, long-term stability under bending is a crucial requirement for flexible electrodes; however, research on this feature is still in the nascent stage. Hydrogen-incorporated amorphous In-Sn-O (a-ITO) thin films were fabricated by introducing hydrogen gas during deposition. The hydrogen concentration in the film was determined by secondary ion mass spectrometry and was found to vary from $4.7{\times}10^{20}$ to $8.1{\times}10^{20}cm^{-3}$ with increasing $H_2$ flow rate. The mechanical stability of the a-ITO thin films dramatically improved because of hydrogen incorporation, without any observable degradation in their electrical or optical properties. With increasing hydrogen concentration, the compressive residual stress gradually decreased and the subgap absorption at around 3.1 eV was suppressed. Considering that the residual stress and subgap absorption mainly originated from defects, hydrogen may be a promising candidate for defect passivation in flexible electronics.

  • PDF

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

소형 수소액화기 설계 및 운전에 관한 연구 (Design and Operation of a Small-Scale Hydrogen Liquefier)

  • 백종훈;강상우;강형묵;나다니엘 갈소;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

나주지역 계절별 태양광발전 시스템 운전특성 (The Operating Characteristics in the Seasons of Photovoltaic System in Naju)

  • 정성찬;신영식;차인수;최정식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.209-213
    • /
    • 2009
  • This article interprets the operating characteristics of the photovoltaic system during the winter and spring seasons, and based on the theoretical knowledge, analyzes the operational characteristics and the power electricity during the tentative application and operation of this system. Through the long-term measurement of the sunshine time and collection of the data related to this, we examine the study of graphic presentation and monitoring systems.

  • PDF

Photocatal~ic Hydrogen Evolution with Platinum Loaded Cadmium-Iron-Sulfide Mixed Crystal Powders in Aque-ous Media

  • 조철래;박세진;김하석
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권8호
    • /
    • pp.805-808
    • /
    • 2000
  • Mixed crystal powders based on Cd,Fe, and S have been synthesized by varying the ratio of CdS and $FeS_2in$ order to find a suitable material usefuI for the effectivc conversion of solar energy. Hydrogen gas was evolved only with CdS/Ptby photocatal ytic reaction under white light in an aqueous 1 M sodiumsulfite solution. From electrochemical studies of semiconductor electrodes. itwas shown that the onset potential shifted to the positive direction and that the bandgap energy also decreased as the molar ratio of Fe increased. A hydrogen evolution mechanism in terms of the conduction band potential and hydrogen evolution potential is proposed.