• 제목/요약/키워드: Solar hybrid process

검색결과 42건 처리시간 0.029초

날씨인식 결과를 이용한 GPS 와 비전센서기반 하이브리드 방식의 태양추적 시스템 개발 (A Hybrid Solar Tracking System using Weather Condition Estimates with a Vision Camera and GPS)

  • 유정재;강연식
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.557-562
    • /
    • 2014
  • It is well known that solar tracking systems can increase the efficiency of exiting solar panels significantly. In this paper, a hybrid solar tracking system has been developed by using both astronomical estimates from a GPS and the image processing results of a camera vision system. A decision making process is also proposed to distinguish current weather conditions using camera images. Based on the decision making results, the proposed hybrid tracking system switches two tracking control methods. The one control method is based on astronomical estimates of the current solar position. And the other control method is based on the solar image processing result. The developed hybrid solar tracking system is implemented on an experimental platform and the performance of the developed control methods are verified.

PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향 (The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells)

  • 김석윤;한주원;오준호;김용현
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

염료감응형 태양전지의 효율 향상을 위한 하이브리드 구조 광전극의 코팅특성 (Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency)

  • 김민희;이형우;정영근
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.449-455
    • /
    • 2010
  • The hybrid structured photo-electrode for dye-sensitized solar cells was fabricated based on the composites of $TiO_2$ nanoparticles and nanowires. Three samples with different hybrid structures were prepared with 17 vol%, 43 vol%, and 100 vol% nanowires. The energy conversion efficiency was enhanced from 5.54% for pure nanoparticle cells to 6.01% for the hybrid structure with 17 vol% nanowires. For the hybrid structured layers with high nanowires concentration (43 vol% and 100 vol%), the efficiency decreased with the nanowire concentration, because of the decrease of specific surface area, and of thus decreased current density. The random orientations of $TiO_2$ nanowires can be preserved by the doctor blade process, resulted in the enhanced efficiency. The hybrid structured $TiO_2$ layer can possess the advantages of the high surface area of nanoparticles and the rapid electron transport rate and the light scattering effect of nanowires.

복합발전용 고온 집광시스템의 집열 특성 분석 (Thermal Test of High-Temperature Solar Concentrating System for Hybrid Power Generation)

  • 김진수;이상남;강용혁;윤환기;유창균;김종규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.580-583
    • /
    • 2006
  • A small-scale solar concentrating system was developed and demonstrated for supplying process heat required in solar thermo chemical reaction. The concentration system consists of a heliostat equipped with a solar tracking device and a dish concentrator. From the initial thermal test of the concentrating system it was found that the system works very well with around 500-600 concentration ratio capable of supplying about 3kW therml energy to the reactor. Once the concentration system was turned on, the reactor temperature rapidly increased over $1,000^{\circ}C$ and could be maintained high enough for solar chemical reaction.

  • PDF

Fabrication of Organic Photovoltaics Using Transparent Conductive Films Based on Graphene and Metal Grid

  • Kim, Sung Man;Walker, Bright;Seo, Jung Hwa;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.441-441
    • /
    • 2014
  • The characteristics of hybrid conductive films based on multilayer graphene and silver grid have been investigated for the high-performance and flexible organic solar cells. The hybrid conductive films have been prepared on glass and polyethylene terephthalate (PET) substrates using conventional photolithography process and transfer process of graphene. The optical and electrical properties of prepared conductive films show transmittance of 87% at 550nm and sheet resistance of $28{\Omega}/square$. The electromechanical properties were also investigated in detail to confirm the flexibility of the hybrid films. OSCs have been fabricated on the hybrid conductive films based on graphene and silver grid on glass substrate. The power conversion efficiency of 2.38%, a fill factor of 51%, an open circuit voltage of 0.58V and a short circuit current of $8.05mA/cm^2$ were obtained from the device on glass substrate. The PCE was enhanced 11% compared with OSCs on the MLG films without silver grid.

  • PDF

태양열 하이브리드 공정을 위한 유동층 입자들의 마모 및 열전달 특성 연구 (Attrition and Heat Transfer Characteristics of Fluidized Bed Materials for a Solar Hybrid Process)

  • 김형우;이도연;남형석;홍영완;서수빈;고은솔;강서영;이시훈
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.65-71
    • /
    • 2020
  • 전기와 천연가스와 같이 안정적이며 신뢰할 수 있는 에너지를 현대 사회가 요구하기 때문에 재생에너지와 화석연료의 장점들을 모두 보유하고 있는 다양한 방식의 태양열 하이브리드 공정들이 세계 각국에서 개발되고 있다. 특히 고체 입자에 태양열을 저장하는 유동층 기반의 태양열 하이브리드 공정은 기존의 유동층 연소 및 가스화에 적용할 수 있을 것으로 기대받고 있다. 이에 본 연구에서는 ASTM D5757 반응기와 0.14 m의 직경과 2 m 높이의 유동층 반응기를 이용하여 태양열 하이브리드 공정의 유동층물질로서 검토되고 있는 실리콘 카바이드, 알루미나 입자들의 마모 및 열전달 특성을 고찰하였다. 특히 다양한 상업 유동층 반응기에서 유동층물질로 이용되는 모래와 비교하였다. 실리콘카바이드와 알루미나의 내마모성은 모래보다 우수하였으며 평균 열전달 계수도 125 ~ 152 W m-2K-1 범위를 가지는 것으로 고찰되었다.

박막 태양전지 연속 생산 시스템 개발에 관한 연구 (A study on development of continuity process system for thin film solar cell)

  • 배성우;조정대;김동수;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.377-377
    • /
    • 2009
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resources is being depleted. In order to solve like this problem, we addressed the roll to roll printing machine for the thin film solar cell by using printing technology. For the this research, we archived concept design and verified propriety.

  • PDF

전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작 (Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon)

  • 이주열;이상열;이주영;김만
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

유연태양전지 대면적/대량 생산시스템 개발에 관한 연구 (A study on development of large area/mass production system for flexible solar cell)

  • 배성우;조정대;김동수;유성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resource is being depleted. Especially, in order to solve like this problem, the study of solar cell manufacturing systems are being extensively researched such as vacuum process. But the major fault of the vacuum process are its expensive production price. On the order hand, Roll-to-roll printing system, the new technology of solar cell manufacturing, has low production price compare with the vacuum process. Also roll-to-roll printing system can decrease the 95% of waste water and 99.9% of harmful gasses than the vacuum process. So we addressed the roll to roll printing system for the flexible solar cell by using printing technology. This roll-to-roll printing system is comprised of various modules, such as web handling module, fine pattern printing module, dry/curing module, uniform coating module and laminating module etc.

  • PDF

하이브리드 모델을 이용하여 중단기 태양발전량 예측 (Mid- and Short-term Power Generation Forecasting using Hybrid Model)

  • 손남례
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.