• Title/Summary/Keyword: Solar heat gain

Search Result 73, Processing Time 0.025 seconds

A Sensitivity Analysis about Solar Heat Gain and Heating Load of ZeSH According to Optical Characteristics of Window system (창호의 광학적 특성에 따른 ZeSH의 일사취득 및 난방부하에 관한 민감도 분석)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.66-71
    • /
    • 2009
  • To reduce the building energy consumption, the major advanced nations are conducting actively many researches on so called a "self-sufficient building(or other words zero energy building)" which can support its required energy by itself. Given this background, KIER(Korea Institute of Energy Research) built full size test-bed of the zero energy solar house in early 2002, and has studied on the self-sufficient heating load up to now. We analyse the sensitivity between the heating load and the solar radiation gain according to the change the effective transmittance of windows. The authors classified 9 cases by solar transmittance of glass. The results demonstrate the solar radiation amount is 0.466 MWh from the eastern zone of Fl.,1(the first floor), 0.332 MWh from Fl.,2(the second floor), 1.194 MWh form the southern zone of F1., and 0.822 MWh from the southern zone of Fl.,2 on the case 1(each cases are classified by window types). On the case 9, the solar radiation amount is 3.127 MWh, 2.662 MWh, 8.799 MWh and 6.078 MWh from the same condition. For the Fl.,1, the amount of Heat Load that is saved per year ranged 10.5 to 48 %, and the reduction was anywhere from 0.2 to 17.9% for Fl.,2

  • PDF

Economic Evaluation of the Passive Solar-house Heating System Using the All-glass Evacuated Solar Collector Tubes and the Pebble Bed Heat Storage (자연형 태양열주택 난방시스템의 경제적 평가)

  • Jang, Moon-Ki;Yulong, Zhang;Zailin, Piao;Rhee, Shin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.43-48
    • /
    • 2008
  • The economics of a passive solar heating system (PSHS) with the pebble bed heat storage was evaluated, and the applications of the PSHS were analyzed, in this study. The results are as follows: The heating load, solar heat gain, and stored heat/year of the PSHS in the solar house model were found to be 10,778MJ, 3,438MJ, and 11,682MJ, respectively. The yearly energy expenses of the PSHS and the alternative heating system (conventional coal heating system, CCHS), which uses coal, were found to be USD 1.60/year and USD 60.90/year, respectively, and the yearly expenses of the PSHS were found to be 38 times less than those of the alternative heating system (CCHS). If it will be supposed that the life cycle of the passive solar heating system, according to the results of the LCC analysis in the two systems, is 40 years, the total expenses for the life cycle of the PSHS and the CCHS will be USD 1,431.50 and USD 2,740.00, respectively. The period for the investment payback of the PSHS is six years.

Research on Thermal Performance by Different Fins in a Solar Air Heater (태양열 공기난방기에서 핀의 형상에 따른 열전달 성능 평가)

  • Choi, Hwi-Ung;Hong, Boo-Pyo;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.85-91
    • /
    • 2013
  • It is essential to reduce the amount of fossil fuel because facing with the natural problem such as a global warming. To achieve this goal, many of interests in the use of renewable energy is growing. Especially, as one of these renewable energy systems, a solar air heater invention has been conducted for enhancing the efficiency of solar air heater. According to this trend, scale-down sized experiment apparatus was constructed and performed for searching a proper fin and confirming the heat transfer performance by fin shape on constant heat condition to enhance efficiency of solar air heater. In this experiment, heat gain, convection heat transfer coefficient, number of transfer units, Nusselt number, Reynold's number, friction factor, performance factor were investigated in order to evaluate the thermal characteristics based on the real data obtained. By comparison with the each fin performance, a zigzag shape keeping a right angle to the plate had the highest value among them.

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Development and Evaluation of an Apparatus to Measure the Solar Heat Gain Coefficient of a Fenestration System According to KS L 9107 (KS L 9107에 의한 태양열 취득률(SHGC) 측정장치 개발 및 평가)

  • Kim, Tae-Jung;Choi, Hyun-Jung;Kang, Jae-Sick;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.512-521
    • /
    • 2014
  • Recently, multiple glazing units, frames, complex fenestration systems, and windows with shading devices have been developed to save cooling energy in buildings. However, very little work has been conducted on developing a direct experimental test method of the solar heat gain coefficient(SHGC) for new fenestration techniques. This study aims to develop and evaluate a test apparatus to measure the SHGC, according to the KS L 9107 test method. The performance of the solar simulator was class A, B, and A, for spectral match, non-uniformity, and instability irradiance, respectively. The differences between the measured and calculated SHGC values were found to range between 0.001 and 0.011, and for all test specimens they agreed within 4%. These results establish the validity of the test apparatus. This system is thus expected to be useful in assessing the energy performance for various types of fenestration.

Experimental Study on the Cooling and Heating Operation Characteristics of a Sea Water Source Heat Pump (해수열원 히트펌프 시스템의 냉난방 운전 특성에 관한 실증 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.544-549
    • /
    • 2009
  • The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is $890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply $60^{\circ}C$ water and heating COP is about 3.0

  • PDF

A Experiment Study on Performance Evaluation of Solar Heat Gain Coefficient in Glazing with Shading Devices (실내 차양장치 결합형 창호의 태양열 취득률 평가에 대한 실험적 연구)

  • Kim, Tae-Jung;Kang, Jae-Sik;Park, Jun-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.89-99
    • /
    • 2014
  • The determination of the solar and thermal performance of fenestration is required for the evaluation of fenestration energy performance, estimating building load. Presently, there exist several methods for determining the thermal transmission(U-value) and solar heat gain coefficient (SHGC) of fenestration system. These method are commonly grouped under calculation or experimental methods. While U-value testing and calculation methods have been long established, SHGC has been evaluated only by the method of calculation under the lack of any established testing method. However, it is difficult to assess the exact SHGC for various types of fenestration with sun-shading or other solar control systems. The purpose of this study was to evaluate the effect of interior venetian blind and roll screen on the SHGC of glazing system. SHGC has been evaluated by the KS L 9107 test method and exiting calculation method for precise comparison of the energy performances of various shading devices. In this research, the test sample consists of three different types of double glazing unit with venetian blind and roll screen. Slat angles of venetian blind were changed to $-45^{\circ}$, $0^{\circ}$, and$-45^{\circ}$. For the roll screen, measurements were taken with the roll screen in the closed position. In result, the venetian blind reduced SHGC by 21.2~28.4% at $45^{\circ}$, when compared to the double glazing unit. The roll screen reduced SHGC by 34.4~41.7% at closed. The differences between the measured and calculated SHGC were found to range between 0.001(0.2%) and 0.047(11.1%) for all test cases. For the cases of venetian blind $-45^{\circ}$, $0^{\circ}$ and $45^{\circ}$, the deviation ratio were 3.6~9.8%, 1.1~2.6%, 4.2~11.1%, respectively. For the case of roll screen, the deviation ratio were 4.1~5.7%.

A Study for Improving Thermal Performance According to Variables of Perforated Baffle in Air-type PVT Collector (공기식 PVT 컬렉터에 적용된 타공 베플의 변수에 따른 열 성능 향상을 위한 연구)

  • Yu, Ji-Suk;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.83-91
    • /
    • 2019
  • Photovoltaic thermal (PVT) collectors are devices that simultaneously produce electricity and heat. Research on conventional air-type PVT collector focuses on installing baffles to enhance the collector's thermal performance. However, the baffles have pressure drop inside the collector which degrades the thermal performance. Thus, it is necessary to design baffles to smoothen the flow inside the air-type PVT collector. Alternatively, installing perforated baffles in air-type PVT collectors can reduce the collector weight, but parameters such as the diameter of the perforated holes and the height of the perforated plates should be considered. Therefore, the main aim of this study was to analyze thermal characteristics of each variable of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through NX program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. Therefore, the main aim of this study was to analyze thermal characteristics of each variable (Baffle angle, length, height, pitch, perforated ratio) of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through CFD program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. As a result, the maximum outlet temperature was increased by 1.45 times and the heat gain was increased by 193.8 Wth, depending on the perforated baffle plate, compared to the collector without the baffle. The heat transfer performance showed that the maximum internal velocity was 1.61 times higher and the Reynolds number was 1.06 times higher depending on the parameters of the baffle plate.

Study on the Energy Saving for School Buildings - through thermal effect of the transparent insulated opaque envelopes - (학교건물의 에너지 절약에 관한 연구 - 투명 단열외피의 열적성능을 중심으로 -)

  • Lee, S.;Kim, S.H.;Kim, K.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • The thermal effect of a transparent insulated opake wall with solar energy was investigated theoretically. The heat gain through transparent insulated opake wall was studied for relative simple conditions. The stationary heat transport effect was studied for layer which is built on the opake wall. This study shows that a relative low solar radiation intensity causes a great heat reduction through the transparent insulated opake wall.

  • PDF

A Study on the Window Energy Rating Systems in Residential Buildings (주거용 건물의 창호에너지평가시스템에 관한 연구)

  • Kim, Dong-Yun;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.33-41
    • /
    • 2016
  • Purpose: The window energy rating system was developed in early 1990's and various kind of rating system has been implemented in advanced country such as Europe, Australia, Canada and the US since 2000. In Korea, the Energy Consumption Efficiency Rating Indication System has been implemented to promote supply of high efficiency window since July 2012. Normally, the window energy rating system based on heat balance which considers both thermal losses and solar heat gain is used and applied only to residential buildings. However, the system used nationally only considers thermal losses and is applied to every building regardless of its usage. Therefore, in this study, we indicated problems of domestic window energy rating system and looked for improvements. Method: We analyzed thermal performance of various windows through dynamic simulation applied to detached house and compared results with those of domestic and foreign rating system. Result : Thermal performance of south windows is more affected by SHGC than U-value, and that of north windows is also affected by SHGC a lot. The difference between the results of our study and current system is statistically significant. As a result, appropriate evaluation criteria which considers solar heat gain is required.