• Title/Summary/Keyword: Solar energy material

Search Result 604, Processing Time 0.029 seconds

Thermo-physical Properties of the Asphalt Pavement by Solar Energy (태양열 에너지에 의한 아스팔트 포장의 열전달 특성)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.717-724
    • /
    • 2020
  • In general, the factors affecting the heat transfer of asphalt pavement are divided into weather factors and pavement materials. Among them, material factors include the thermophysical and surface properties. An experiment was conducted on the thermal-physical factors of asphalt, which are the basis for the pavement failure model. The thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity were evaluated as the thermo-physical properties of asphalt. The specimens (WC-2 & PA-13) used in the experiment were compacted with a Gyratory Compactor. The experimental results of WC-2 and PA-13 showed a thermal conductivity of 1.18W/m·K and 0.9W/m·K, specific heat capacity of 970.8J/kg·K and 960.1J/kg·K, thermal emissivity of 0.9 and 0.91, and thermal diffusivity of 5.15㎡/s and 4.66㎡/s, respectively. Experiments on the heat transfer characteristics (thermo-physical properties) of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Sea Ice Drift Tracking from SAR Images and GPS Tracker (SAR 영상과 GPS 추적기를 이용한 여름철 해빙 이동 궤적 추적)

  • Jeong-Won Park;Hyun-Cheol Kim;Minji Seo;Ji-Eun Park;Jinku Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.257-268
    • /
    • 2023
  • Sea ice plays an important role in Earth's climate by regulating the amount of solar energy absorbed and controlling the exchange of heat and material across the air-sea interface. Its growth, drift, and melting are monitored on a regular basis by satellite observations. However, low-resolution products with passive microwave radiometer have reduced accuracy during summer to autumn when the ice surface changes rapidly. Synthetic aperture radar (SAR) observations are emerging as a powerful complementary, but previous researches have mainly focused on winter ice. In this study, sea ice drift tracking was evaluated and analyzed using SAR images and tracker with global positioning system (GPS) during late summer-early autumn period when ice surface condition changes a lot. The results showed that observational uncertainty increases compared to winter period, however, the correlation coefficient with GPS measurements was excellent at 0.98, and the performance of the ice tracking algorithm was proportional to the sea ice concentration with a correlation coefficient of 0.59 for ice concentrations above 50%.

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.