• Title/Summary/Keyword: Solar driven

Search Result 134, Processing Time 0.028 seconds

The Probability of Solar Proton Events (SPEs) depending on solar and interplanetary type II bursts

  • Youn, Sae-Poom;Moon, Young-Jae;Park, Jin-Hye
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.4-29
    • /
    • 2011
  • Solar Proton Events (SPEs, ${\geq}\;10\;cm^{-1}s^{-1}sr^{-1}$ with >10 MeV) are very important for space weather forecasting. It is well known that they are associated with solar flares and/or CME-driven shocks. Especially, the CME-driven shocks have been observed as solar and interplanetary type II bursts. In this study, we estimated the occurrence probability of SPEs depending on three groups: (1) metric, (2) decameter-hectometric (D-H), and (3) meter-to-kilometric (m-to-km) type II bursts. For this work, we used SPEs and all available type II burst data in 1996-2004. The primary findings of this study are as follows. First, the majority (77%) of the m-to-km type II bursts are associated with SPEs and its probability is noticeably higher than D-H type II bursts probability strongly depend on longitude: eastern (0%), center(45%), and western (33%) for X-class associated metric type II bursts, eastern (15%), center (55%), and western (50%) for X-class associated D-H type II bursts, eastern (17%), center (77%), and western (64%) for X-class associated m-to-km type II bursts. Third, for m-to-km type II bursts, the SPE probability increases with CME speed: 400km/s${\leq}$V <1000km/s (36%), 1000km/s ${\leq}$V<1500km/s (40%), 1500km/s${\leq}$V (66%). Finally, we expect that these results will be used for setting up more reasonable solar proton event forecasting models.

  • PDF

Thermal performance of solar cooling and hot water for the demonstration system (태양열 실증 시스템의 냉방 및 급탕 일일 열성능)

  • Lee, Ho;Kim, Sang-Jin;Joo, Hong-Jin;Kwak, Hee-Youl
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

Numerical simulation of transient laminar compressible convection in a rectangular enclosure (사각형(四角形) 밀폐공간내(密閉空間內)의 과도(過度) 층류(層流) 압축성(壓縮性) 자연(自然) 대류(對流)에 관(關)한 수치해석적(數値解析的) 연구(硏究))

  • Kim, Byung-Yong
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1982
  • The problem of transient laminar natural convection in compressible fluid in a rectangular enclosure is considered. The upper and lower boundaries of the enclosure are thermally insulating and the side boundaries are maintained at fixed temperatures. The fluid is considered to be a perfect gas with constant viscosity and thermal conductivity and the formulation differs from the boussinesq simplification in that the effects of variable density are completely retained. The motions are restricted to two dimensions. For incompressible fluid, the natural convection is driven mainly by buoyancy force. But the solutions show that for compressible fluid, the natural convection is driven by pressure and buoyancy forces and the thermally induced motion is acoustic in nature.

  • PDF

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF

Thermal Characteristics of Hybrid Solar Receiver using a Solar and Combustion heating (태양열과 가스 연소열을 적용한 복합 태양열 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.33-38
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy. Successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heating. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

Performance Tests on an Air Solar Heating System (공기식 태양열 난방계통의 성능실험)

  • Nam, Pyeong-Woo;Cha, Jong-Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 1979
  • The performance of air type solar heating system has been investigated for a system which has been operating continuously for two years. Design factors of a collector, such as the effective transmittance-absorptance and heat transfer factor were also determined experimentally. The flat plate collector is fabricated from steel sheet metal with two sealed glass covers. Solar heat is stored in a pebble bed of primarily granitic rock approximately 20-40 mm in diameter. The system is controled by automatically driven motors and dampers. The ratio of useful collected solar heat divided by the total solar radiation on the collector dropped was the range of 35 to 42 percent in monthly average. As it result, the air system was found fairly competitive with the water system, however, the heat supply from storage was limited because of using the pebble as the heat storage media.

  • PDF

Thermal Characteristics of a Solar and Gas-fired Receiver (태양열과 가스 연소열을 복합 적용한 흡수기의 열특성 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Yoon, Hwan-Ki;Yu, Chang-Kyun;Lee, Sang-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.157-160
    • /
    • 2006
  • The Dish/Stirling system with the Stirling engine is currently used to convert solar energy directly to electrical energy successful operation of dish/Stirling system is supported by hybrid system, which will allow continuous operation driven by solar and combustion heat ins. The hybrid Receiver has to be provided with an additional combustion system. The heat pipe receiver and conbustion system were manufactured and tested for thermal characteristics of receiver. Maximum temperature difference along the heat pipe surface is $200^{\circ}C$. Emission measurements showed low NOx values of 28 to 46 ppm and very high CO values of 18 to 201 ppm.

  • PDF

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

Large Solar Eruptive Events

  • Lin, R.P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Major solar eruptive events, consisting of both a large flare and a near simultaneous fast coronal mass ejection (CME), are the most powerful explosions in the solar system, releasing $10^{32}-10^{33}$ ergs in ${\sim}10^{3-4}\;s$. They are also the most powerful and energetic particle accelerators, producing ions up to tens of GeV and electrons up to hundreds of MeV. For flares, the accelerated particles often contain up to ~50% of the total energy released, a remarkable efficiency that indicates the particle acceleration is intimately related to the energy release process. Similar transient energy release/particle acceleration processes appear to occur elsewhere in the universe, in stellar flares, magnetars, etc. Escaping solar energetic particles (SEPs) appear to be accelerated by the shock wave driven by the fast CME at altitudes of ~1 40 $R_s$, with an efficiency of ~10%, about what is required for supernova shock waves to produce galactic cosmic rays. Thus, large solar eruptive events are our most accessible laboratory for understanding the fundamental physics of transient energy release and particle acceleration in cosmic magnetized plasmas. They also produce the most extreme space weather - the escaping SEPs are a major radiation hazard for spacecraft and humans in space, the intense flare photon emissions disrupt GPS and communications on the Earth, while the fast CME restructures the interplanetary medium with severe effects on the magnetospheres and atmospheres of the Earth and other planets. Here I review present observations of large solar eruptive events, and future space and ground-based measurements needed to understand the fundamental processes involved.

  • PDF