• Title/Summary/Keyword: Solar conversion efficiency

Search Result 856, Processing Time 0.027 seconds

Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71 Butyric Acid Methyl Ester Composite Thin Film

  • Ochiai, Shizuyasu;Uchiyama, Masaki;Kannappan, Santhakumar;Jayaraman, Ramajothi;Shin, Paik-Kyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • Organic solar cell devices were fabricated using poly[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl] PCDTBT/ [6,6]-phenyl $C_{71}$ butyric acid methyl ester (PC71BM) active layer deposited by spin coating. Moreover, the relationship between solar cell performance and buffer layer thickness was investigated by spin coating speed and AFM imaging of the buffer layer surface. The performance of the organic solar cell with spin-coated active layer was then evaluated, and the power conversion efficiency of the solar cell was determined to be > 5%.

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

Recent Research Progress on Eco-Friendly Perovskite Solar Cells (친환경 페로브스카이트 태양전지 최신 기술 동향)

  • You, Hyung Ryul;Choi, Jongmin
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • Metal halide perovskite materials are considered as promising semiconducting materials for next-generation solar cells due to their unique electrical and optical properties. Intensive progress in perovskite solar cell yielded a certified power conversion efficiency over 24%. However, most of highly efficient perovskite solar cells required Pb-based perovskite materials, which is a critical obstacle for their commercialization, and development of Pb-free perovskite materials is one of recent urgent issues in this field. In this paper, we will introduce recent research progress on Pb-free perovskite solar cells.

Characterization of Anthraquinone-Based Electron Acceptors for Organic Solar Cells (유기태양전지용 안트라퀴논 기반 전자 받게 분자의 특성 분석)

  • Hyun, Chang-Seok;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.366-371
    • /
    • 2022
  • Recently many efforts have been made to develop a novel class of non-fullerene electron acceptor materials for high-performance organic solar cells. In this work, anthraquinone derivatives, TMAQ and THAQ, were prepared and their availability as electron acceptor materials for organic solar cells were investigated in terms of optical, thermal, electrochemical properties, and solar cell devices. Compared to TMAQ, a significant bathochromic shift of absorption band was observed for THAQ owing to intramolecular hydrogen-bond-assisted CT interactions. Thanks to the fused aromatic ring structure and benzoquinone unit, both TMAQ and THAQ exhibited a high thermal stability and an efficient electron reduction process. In particular, the intramolecular O-H---O=C hydrogen bond of THAQ plays an important role in improving the thermal stability and electron reduction properties. In the P3HT:acceptor solar cell system, THAQ-based devices had more than ca. 6 times higher power conversion efficiency than TMAQ -based devices. These results serve as a guide for developing high-efficient anthraquinone-based electron acceptor materials.

Study on the Utilization of Public Data for the Introduction of Solar Energy in Rural Areas (농촌지역 태양광에너지 도입을 위한 공공데이터 활용방안)

  • Kim, Sang-Bum;Kim, Yong-Gyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.175-182
    • /
    • 2023
  • The purpose of this study, the trend of renewable energy, domestic and foreign renewable energy policies, and the flow of the legal system related to renewable energy location were identified, and a location analysis using public data was studied when solar energy was located. First, renewable energy is leading to energy conversion by reducing the proportion of existing fossil fuel-centered energy sources in the global trend and increasing the proportion of renewable energy, an eco-friendly energy source, and changing the institutional and market structure. Second, large-scale solar energy power plants are installed and operated in rural areas where there is no change in insolation and land prices are cheaper than in urban areas where there are many changes in insolation due to surrounding high-rise buildings and street trees. Third, if a preliminary location review is conducted using public data at this time, it will be easy to identify the optimal location for area and size calculation. Fourth, the solar energy location functional area was studied in area A, and the total area of the target area was 624.5km2, with 392.7km2 and 62.9% of the avoidance area where solar power cannot be located.

Sulfur Defect-induced n-type MoS2 Thin Films for Silicon Solar Cell Applications (실리콘 태양전지 응용을 위한 황 결핍 n형 MoS2 층 연구)

  • Inseung Lee;Keunjoo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.46-51
    • /
    • 2023
  • We investigated the MoS2 thin film layer by thermolytic deposition and applied it to the silicon solar cells. MoS2 thin films were made by two methods of dipping and spin coating of (NH4)2MoS4 precursor solution. We implemented two types of substrates of microtextured and nano-microtextured 6-in. Si pn junction wafers. The fabricated MoS2 thin film layer was analyzed, and solar cells were fabricated by applying the standard silicon solar cell process. The MoS2 thin film layer of sulfur-deficient form was deposited on the n-type emitter layer, and electrons, which are minority carriers, were well transported at the interface and exhibited photovoltaic solar cell characteristics. The cell efficiencies were achieved at 5% for microtextured wafers and 2.56% for nano-microtextured wafers.

  • PDF

N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells (염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체)

  • An, Ha-Rim;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF

Development of Highly Efficient Dye-Sensitized Solar Cells Using ZnO Post-Treated TiO2 Photoelectrodes (ZnO로 후처리된 TiO2 광전극을 이용한 고효율의 염료감응형 태양전지의 개발)

  • PARK, JUN-YONG;YUN, BYEONG-RO;KIM, TAE-OH
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, an efficient dye-sensitive solar cells (DSSC) was developed after post-treatment of ZnO on $TiO_2$ photoelectrode. The $TiO_2$ electrode with ZnO post treatment was prepared with Titanium isoporopoxide in Zinc Nitrate Hexahydrate aqueous solution by incineration for 30 min at $450^{\circ}C$. The ZnO-post treated $TiO_2$ electrode showed strong dispersion force between particles in relation to the control $TiO_2$, referring high specific surface area and dye-adsorption rate. Proper addition of ZnO enhanced electron mobility and reduced internal resistance and electron recombination. Light conversion efficiency of DSSCs containing the ZnO-posttreated $TiO_2$ electrode increased 35.4% when compared to the DSSCs using $TiO_2$ electrode. It is similar to the DSSCs with $TiCl_4$ post treatment $TiO_2$ electrode. Increasing of light conversion efficiency was due to high specific surface area and dispersion force, and low dye-adsorption rate and electron recombination. Taken together, ZnO may be used as posttreatment of photoelectrode and replaced $TiCl_4$ that has high toxicity and causticity.