• 제목/요약/키워드: Solar conversion efficiency

검색결과 851건 처리시간 0.037초

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P.;Khan, Sovann;Kim, Sun Jin;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.221-239
    • /
    • 2014
  • The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

실리콘 태양전지의 전면 grid 간격 변화에 따른 광 변환 특성 평가 (Conversion Efficiency about Various Spacing of Front Metal Grid Lines for Silicon Solar Cells)

  • 최준영;김도완;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.5-6
    • /
    • 2006
  • There are typically applied on both rear and front sides of electrical contacts to the solar cell. The front contact formation is particularly sensitive to many parameters. Accordingly patterning of front grid line is an important factor of solar cells. This paper describe the electrical conversion efficiency, inclusive of shading loss that gives various spacing between front metal grid lines. In experiments with variation of spacing. It was verified that the wide spacing of grid fingers could increase the series resistance, also the narrow spacing of grid fingers also implies a grid with a higher density of grid fingers. The sunlight of incidence was more of reflection by grid fingers. In result, the short circuit current, which contribute to conversion efficiency was decreased, because maximum power input was reduced and increase the series resistance.

  • PDF

Interfacially Controlled Hybrid Thin-film Solar Cells Using a Solution-processed Fullerene Derivative

  • 남상길;송명관;김동호;김창수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.190.2-190.2
    • /
    • 2014
  • We report the origin of the improvement of the power conversion efficiency (PCE) of hybrid thin-film solar cells when a soluble C60 derivative, [6,6]-phenyl-$C_{61}$-butyric acid methyl ester (PCBM), is introduced as a hole-blocking layer. The PCBM layer could establish better interfacial contact by decreasing the reverse ark-saturation current density, resulting in a decrease in the probability of carrier recombination. The power conversion efficiency of this optimized device reached a maximum value of 8.34% and is the highest yet reported for hybrid thin-film solar cells.

  • PDF

Improved Energy Conversion Efficiency of Dye-sensitized Solar Cells Fabricated using Open-ended TiO2 Nanotube Arrays with Scattering Layer

  • Rho, Won-Yeop;Chun, Myeoung-Hwan;Kim, Ho-Sub;Hahn, Yoon-Bong;Suh, Jung Sang;Jun, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1165-1168
    • /
    • 2014
  • We prepared dye-sensitized solar cells (DSSCs) with enhanced energy conversion efficiency using open-ended $TiO_2$ nanotube arrays with a $TiO_2$ scattering layer. As compared to closed-ended $TiO_2$ nanotube arrays, the energy conversion efficiency of the open-ended $TiO_2$ nanotube arrays was increased from 5.63% to 5.92%, which is an enhancement of 5.15%. With the $TiO_2$ scattering layer, the energy conversion efficiency was increased from 5.92% to 6.53%, which is an enhancement of 10.30%. After treating the open-ended $TiO_2$ nanotube arrays with $TiCl_4$, the energy conversion efficiency was increased from 6.53% to 6.89%, a 5.51% enhancement, which is attributed to improved light harvesting and increased dye adsorption.

TiO2-Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성개선연구 (A Study on the Characteristics of TiO2-Nb2O5 Semiconductor Oxides Using Dye-Sensitized Solar Cell)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.538-542
    • /
    • 2019
  • 광 전환 효율에 관여하는 $TiO_2$와 같은 반도체 산화물은 염료 감응 태양전지(Dye-sensitized solar cell, DSSC)의 주요 요소이며, 효율을 개선하기 위해 서로 다른 반도체 산화물을 혼합하여 Pastes를 제조해 사용하는 연구가 이루어지고 있다. 본 연구에서는 $TiO_2-Nb_2O_5$ 혼합 반도체 산화물을 제조하여 염료 감응 태양전지의 특성을 분석하였다. 혼합 반도체 산화물이 광 전환 효율에 미치는 전기적인 특성을 분석하기 위해서 $Nb_2O_5$을 서로 다른 비율로 첨가하여 태양전지를 제작하였다. 이에 $Nb_2O_5$가 첨가됨에 따라 전해질과의 접촉에 의한 재결합 현상보다 전도성이 겅화되어 태양전지의 단락 전류, 개방전압, 변환 효율 등이 개선되는 것을 확인하였다.

국내 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • 박준서;김지훈;고형덕;이기용;김정혁;한일기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF

실외 발전을 위한 염료감응형 태양전지의 봉지재 개발 (Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power)

  • 기현철;홍경진
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

Fresnel 렌즈-DCPC-집광형태양전지-방열판형 solar module에 관한 연구 (Fresnel lens-DCPC-concentrating solar cell-heat sink type solar module)

  • 송진수
    • 전기의세계
    • /
    • 제30권10호
    • /
    • pp.655-661
    • /
    • 1981
  • The concentrating solar module with high concentration ratio(320)has been studied.in this paper. The solar module was composed of the EMVJ solar cell, (Fresnel Lens-DCPC)concentrator and heat sink, and was measured by using the PASTF system. The experimental result and the result analysis for the individual item of the module were as f ollows; (1) The conversion efficiency of the module was 8.3%. (2) The optical efficiency of the concentrator was 46.5% (DCPC; 84.8%, Fresnel Lens; 54.8%). (3) The thermal loss of the solar cell was 4.9%. And methods for the further improvement of the concentrating solar module efficiency have been suggested.

  • PDF

DSC를 활용한 상용전력변환 시스템에 관한 연구 (A study on the power conversion system using Dye-Sensitized Solar cell)

  • 김진영;박성준;박해명;김우성;김휘영;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF