• Title/Summary/Keyword: Solar conversion efficiency

Search Result 856, Processing Time 0.025 seconds

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

A Study on Characteristic of Power Conversion System of the Photovoltaic Using a Solar Position Tracker (위치 추적기를 사용한 태양광 발전의 전력 변환시스템 특성에 관한 연구)

  • Hwang, L.H.;Jang, J.H.;Na, S.K.;Kim, Y.S.;Ahn, I.S.;Cho, M.T.;Song, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1034-1036
    • /
    • 2006
  • In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and, composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF

A Study on Characteristics of ZnO/n-Si Low Cost Solar Cells (ZnO/n-Si 저가 박막태양전지의 특성연구)

  • Baik, D.G.;Cho, S.M.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • ZnO/n-Si junctions were fabricated by spin coating with ZnO precursor produced by the sol-gel process. In order to increase the electrical conductivity of ZnO films, the films were n-doped with Al impurity and subsequently annealed at about $450^{\circ}C$ under reducing environments. The ohmic contacts between n-Si and AI for a bottom electrode were successfully fabricated by doping the rear surface of Si substrate with phosphorous atoms. The front surface of the substrate was also doped with phosphorous atoms for improving the efficiency of the solar cells. Consequently, conversion efficiencies ranging up to about 5.3% were obtained. These efficiencies were found to decrease slowly with time because of the oxide films formed at the ZnO/Si interface upon oxygen penetration through the porous ZnO. Oxygen barrier layers could be necessary in order to prevent the reduction of conversion efficiencies.

  • PDF

Development of Solar Powered Water Pump - Energy conversion test and performance analysis - (태양열을 동력원으로 한 물펌프 연구개발 - 에너지변환실험과 성능해석 -)

  • 김영복;이양근;이승규;김성태;나우정;정병섭
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • In this study, energy conversion from thermal energy to mechanical power by using n-pentane was tested and exergy variation, cycle number, water quantity pumped and thermal efficiency were analyzed. The energy conversion was done and the water head could be ten meters on the experimental conditions. The operating temperature range of cycle was recommended to be around the liquid-vapour saturation temperature of the working fluid on the viewpoint of the maximum work. The cycle diagram was analyzed by the exergy analysis. For the constant water head, the cycle number was decreased and the water quantity per day was increased and thermal efficiency become higher when the water quantity per cycle become increasing. For the constant pumping water quantity per cycle, cycle number and the water quantity per day was decreased and the thermal efficiency become higher because the saturation temperature become higher when the water head become higher.

A Study on Poly-Si Solar Cell of Novel Structure with the Reduced Effects of Grain Boundaries (결정입계 영향을 줄인 새로운 구조의 다결정 실리콘 모양전지에 관한 연구)

  • Lim, Dong-Gun;Lee, Su-Eun;Park, Sung-Hyun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1738-1740
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A solar cell conversion efficiency was degraded by grain boundary effect in Polycrystalline silicon. To reduce grain boundary effect, we performed a preferential grain boundary etching, $POCl_3$ n-type emitter doping, and then ITO film growth on poly-Si. Among the various preferential etchants, Schimmel etch solution exhibited the best result having grain boundary etch depth about $10{\mu}m$. RF magnetron sputter grown ITO films showed a low resistivity of $10^{-4}\Omega-cm$ and high transmittance of 85%. With well fabricated poly-Si solar cells. we were able to achieve as high as 15% conversion efficiency at the input power of 20mW/$cm^2$.

  • PDF

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au Nano Thin Films

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.417-421
    • /
    • 2016
  • We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the $TiO_2$ layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

The Deduction of the Optimal Length to Width Ratio of Dye-sensitized Solar Cell and the Fabrication of a Module (가로-세로 비율에 따른 염료감응형 태양전지의 최적 조건 도출 및 모듈 제조)

  • Kim, Hee-Je;Park, Sung-Joon;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Mi-Jeong;Lee, Kyoung-Jun;Son, Min-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.100-106
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-sensitized Solar Cells (DSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6\;cm$ and an active area $8\;cm^2$ ($4.62{\times}1.73\;cm$) which attained a conversion efficiency of 4.02%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. Surface morphology and sheet resistance of Pt counter electrode did not degrade the performance of the cell. This novel 8V-0.33A DC power source shows stable performance with an energy conversion efficiency of 4.24% under 1 sun illumination (AM 1.5, Pin of $100\;mW/cm^2$).

Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells

  • Jang, Inseok;Song, Kyungho;Park, Jun-Hwan;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2883-2888
    • /
    • 2013
  • To enhance the power conversion efficiency of dye-sensitized solar cell (DSSC), the surface of titanium dioxide ($TiO_2$) photoelectrode was modified by hydroxylation treatment with $NH_4OH$ solution at $70^{\circ}C$ for 6 h. The $NH_4OH$ solutions of various concentrations were used to introduce the hydroxyl groups on $TiO_2$ surface. As the concentration of $NH_4OH$ was increased, the short-circuit current density ($J_{SC}$) value and conversion efficiency of solar cells were increased because the amount of adsorbed dye molecules on $TiO_2$ surface was increased. As a result of the surface modification to introduce hydroxyl groups, the concentration of adsorbed dye on the $TiO_2$ surface could be improved up to 32.61% without the changes of morphology, surface area and pore volume of particles. The morphology, the specific surface area, the pore volume and the chemical states of $TiO_2$ surface were characterized by using FE-SEM, $N_2$ adsorption-desorption isotherms and XPS measurements. The amount of adsorbed dye and the performance of fabricated cells were analyzed by using UV-Vis absorption spectroscopy and solar simulator.

Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells

  • Noh, Yunyoung;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.380-383
    • /
    • 2015
  • We prepared the $TiO_2$ layer with 0 ~ 4 wt% of polystyrene (PS) beads having a radius of 250 nm to increase the dye adsorption and energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Then, we fabricated DSSCs using $0.45cm^2$ active area. FE-SEM was used to characterize the microstructure consisting of $TiO_2$ layer and PS beads. UV-VIS-NIR was used to determine the optical absorbance of working electrodes (WEs). Solar simulator and potentiostat were used to determine the photovoltaic properties. We observed that pores having a radius of 250 nm were formed with the density of $0.15ea/{\mu}m^2$ in $TiO_2$ layers after conducting the sintering process. The absorbance in visible light regime was found to increase with the increase in the amount of PS beads. The ECE increased from 4.66% to 5.25% when the amount of PS beads was increased from 0 to 4 wt%. This is because the pores of PS beads increased the adsorption of dye. Our results indicate that the ECE of the DSSCs can be enhanced by the addition of an appropriate amount of PS beads into $TiO_2$ layers.