• 제목/요약/키워드: Solar channel calibration

검색결과 6건 처리시간 0.02초

SHORT-TERM CALIBRATION OF MTSAT-1R SOLAR CHANNEL USING DESERT TARGETS

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.426-429
    • /
    • 2008
  • In this study, we propose the calibration algorithm for the solar channel (550 ${\sim}$ 900 nm) of MTSAT 1R which is the Japanese geostationary satellite launched on 26 Feb. 2005 and located at $140^{\circ}E$. We developed a method utilizing MODIS-derived BRDFs for the solar channel calibration over the bright desert area. Targets are selected based on the desert's brightness, spatial uniformity, temporal stability and spectral stability. The 6S model has been incorporated to account for directional effects of the surface using MODIS-derived BRDF parameters within the spectral interval in interest. Results based on the analysis for the period from November 2007 to June 2008 suggest that MTSAT-1R solar channel measurements have a low bias within 5%.

  • PDF

Calibration for the solar channel of COMS/MI using MODIS-derived BRDF parameters over desert targets

  • Sohn Byung-Ju;Chun Hyoung-wook
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.101-103
    • /
    • 2005
  • Vicarious calibration method using MODIS-derived surface reflectivity data as inputs to a radiative transfer model have been developed for the planned COMS solar channel. Pilot test was conduced over the Simpson Desert targets in Australia. Results suggested that calibration can be achieved within $5\%$ error range.

  • PDF

DEVELOPING A VISIBLE CHANNEL CALIBRATION ALGORITHM FOR COMS OVER OCEAN AND DESERT TARGETS

  • Sohn, B.J.;Chun, Hyoung-Wook;Kim, Jung-Geun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.53-56
    • /
    • 2007
  • The Korean Geostationary satellite (COMS) to fly in year 2009 will carry a meteorological sensor from which visible channel measurements will be available. We developed a method utilizing satellite-derived BRDFs for the solar channel calibration over the bright desert area. The 6S model has been incorporated to account for directional effects of the surface using MODIS-derived BRDF parameters within the spectral interval in interest. Simulated radiances over the desert targets were compared with MODIS and SeaWiFS measured spectral radiances in order to examine the feasibility of the developed calibration algorithm. We also simulated TOA radiance over ocean targets to verify the consistency and reliability of the result. It was shown that simulated 16-day averaged radiances are in good agreement with the satellite-measured radiances within about ${\pm}5%$ uncertainty range for the year 2005, suggesting that the developed algorithm can be used for calibrating the COMS visible channel within about 5% uncertainty level.

  • PDF

Radiometric Calibration Method of the GOCI (Geostationary Ocean Color Imager)

  • Kang, Gumsil;Myung, Hwan-Chun;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.60-63
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of oceancolor around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this paper radiometric calibration concept of the GOCI is introduced. The GOCI radiometric response is modeled as a nonlinear system in order to reflect a nonlinear characteristic of detector. In this paper estimation approaches for radiometric parameters of GOCI model are discussed. For the GOCI, the offset signal depends on each spectral channel because dark current offset signal is a function of integration time which is different from channel to channel. The offset parameter can be estimated by using offset signal measurements for two integration time setting is described.

  • PDF

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • 성세현;김석환;류동옥;홍진석
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF