• Title/Summary/Keyword: Solar auxiliary power

Search Result 36, Processing Time 0.025 seconds

Auxiliary Power Interface Design for Power Control and Distribution Unit (전력조절분배기의 보조전원 설계)

  • Park, Sung-Woo;Jang, Jin-Beak;Park, Hee-Sung;Yoon, Hee-Kwang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.239-242
    • /
    • 2009
  • Power Control and Distribution Unit (PCDU) plays roles of power generation control for solar array panel, power storage control for battery system, power conversion for unregulated and regulated primary bus and power distribution to bus and payload system. The selection and design of the proper auxiliary power interface for PCDU depending on various mission is one of the most important step for electrical power subsystem design. In this paper, the general design approach of auxiliary power interface for PCDU which can be used for small-sized LEO satellites application is given. And, the auxiliary power design concept for always alived modules such as solar array regulator and house keeping module is also suggested.

  • PDF

A Study on the Feasibility of Installing Solar Auxiliary Power for Small Fishing Boats (태양광 보조전원을 설치한 소형선박의 타당성 연구)

  • Yoon, Kyoungkuk;Jeon, Hyeonmin;Hwang, Junyoung;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.883-889
    • /
    • 2021
  • The South Korean fishing industry is experiencing a rapid growth owing to an increase in its leisure-fishing population. Consequently, fishing boats weighing 9-10 [ton] have also been increasing. Current fishing boats operate their essential equipment by switching their engines with batteries to reduce the cost of gas and engine noise. However, stranding incidents have been increasingly recorded annually, in which boats fail to start owing to discharged batteries, and these incidents can lead to serious casualties. This study proposes the installation of a solar auxiliary power system to safeguard fishing boats, particularly those weighing between 9-10 [ton]. The feasibility of securing space for the solar auxiliary power of boats under consideration was verified. To examine the application of solar power, this study calculates the load necessary to operate it for fishing and models such a system using an electricity analysis program The modeled system, which applies the monthly horizontal solar insolation, validated the adoption of a solar auxiliary power in fishing boats.

The Study on the Controller for Battery of Guide-Eye Sign Lamp Power Supply with Traffic Auxiliary System by Solar Cell (Solar Cell을 적용한 교통 시설물용 시선유도 표시등 전원 충전용 컨트롤러에 관한 연구)

  • Yoon, Hyung-Sang;Yoon, Suk-Am;Lim, Joong-Yeol;Cho, Gyung-Jae;Kim, Min;Kim, Jae-Min;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.554-557
    • /
    • 1999
  • This paper represent about design of the controller for battery of Guide-Eye Sign Lamp with traffic auxiliary system for power supply using solar cell. Simulation is represents V-I and power characteristic by Mathematical & Design Center 6.3 & Qnet 2.1. This system is successfully operating with high clearness lights.

  • PDF

The Study on the Controller for Battery of fence power supply with traffic Auxiliary system by Solar Cell (Solar Cell을 적용한 교통 시설물용 휀스의 전원 충전용 컨트롤러에 관한 연구)

  • Yun, Hyng-Sang;Lim, Jung-Yoel;Yun, Suck-Am;Cha, In-Su;Chang, Hyuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.166-169
    • /
    • 1998
  • This paper represent about design of the controller for battery of fence with traffic controller for battery of fence with traffic auxiliary system for power supply using solar cell. Simulation is represents V-I and power characteristic by Pspice. This system is successfully operating with high clearness lights.

  • PDF

Auxiliary Power Supply using Photovoltaic Power Generation for Air-Conditioner (태양광발전을 이용한 에어콘의 보조운전 제어 시스템)

  • 황인호;유권종;송진수;이후기;정찬규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.47-52
    • /
    • 1993
  • Recently, as exactly clean source, the research of photovoltaic power generation is undertaken actively and widely. In this paper, an auxiliary power supply system which is composed of photovoltaic generation and DC-DC boost chopper is described. This system in mainly for Air-conditioner appliances is which AC source is formed through rectifying circuit and without electrical storage battery. There exist two operating modes depending on the power quantity of the solar cells and the load. The control algorithm is discussed.

  • PDF

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

Development of LED Auxiliary Power System for Ship using DSSC (염료감응 태양전지를 이용한 선박용 LED등의 보조 전원 개발)

  • Lee, Jin;Yang, Jae-Chang;Kim, Sang-Ki;So, Soon-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1312-1316
    • /
    • 2014
  • The color and the installation position of the LED lamp for night voyage of the ship are changed by the purpose of it. The power dissipation occurs because a navigation light is on and off or continuously on. In addition, in case that the light is produced by operating generator in the ship, it's very inefficient except that it's on a voyage. Therefore in this dissertation, we construct auxiliary power system for the LED lamp of the ship, producing and developing a module, a panel, and a charging system using Dye-sensitize Solar Cell.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.