• Title/Summary/Keyword: Solar Tracking Algorithm

Search Result 146, Processing Time 0.022 seconds

Heat-Flux Analysis of Solar Furnace Using the Monte Carlo Ray-Tracing Method (몬테카를로 광선추적법을 이용한 태양로의 열유속 해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.989-996
    • /
    • 2011
  • An understanding of the concentrated solar flux is critical for the analysis and design of solar-energy-utilization systems. The current work focuses on the development of an algorithm that uses the Monte Carlo ray-tracing method with excellent flexibility and expandability; this method considers both solar limb darkening and the surface slope error of reflectors, thereby analyzing the solar flux. A comparison of the modeling results with measurements at the solar furnace in Korea Institute of Energy Research (KIER) show good agreement within a measurement uncertainty of 10%. The model evaluates the concentration performance of the KIER solar furnace with a tracking accuracy of 2 mrad and a maximum attainable concentration ratio of 4400 sun. Flux variations according to measurement position and flux distributions depending on acceptance angles provide detailed information for the design of chemical reactors or secondary concentrators.

Development of Neural Network Controller for Maximum Power Point Tracking of PV System (PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

MPPT Control of Photovoltaic using Neural Network (신경회로망을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.221-223
    • /
    • 2008
  • This paper presents a maximum power point tracking(MPPT) of Photovoltaic system with chopping ratio of DC-DC converter considered load. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. The paper consists of solar radiation source, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an adaptive control of neural network, calculates converter-chopping ratio using an adaptive control of NN. The results of an adaptive control of NN compared with the results of converter-chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

  • PDF

MPPT of photovoltaic system with duty ratio of DC-DC converter considered load (부하를 고려한 DC-DC 컨버터의 듀티비에 따른 태양광 발전 시스템의 최대전력점 추적)

  • Jun, Young-Sun;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.407-410
    • /
    • 2008
  • This paper presents a maximum power point tracking(MPPT) of photovoltaic system with duty ratio of DC-DC converter considered load. A variation of solar irradiation is most important factor in the MPPT of PV system That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. The paper consists of solar radiation source, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an adaptive control of neural network, calculates converter-duty ratio using an adaptive control of NN. The results of an adaptive control of NN compared with the results of converter-duty ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

  • PDF

A Study on the Development of Charging Controller in Stand-Alone PV Power Generation System (독립형 태양광 발전 시스템 충전제어기 개발에 관한 연구)

  • 곽준호;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.916-921
    • /
    • 2004
  • This paper describes microprocessor-based control of photovoltaic power conditioning system. where the microprocessor is responsible for control of output power in accordance with the generated array DC power. The microprocessor includes the control algorithm of maximum power point tracking and converter control algorithm. In this power, we have designed a MPPT(Maximum Power Point Tracker) algorithm with environment factors and a PWM(Pulse Width Modulation) algorithm for high efficiency. The controller has been tested in the laboratory with the power conditioner and shows excellent performance.

A Study of MPPT Algorithm for PV PCS (태양광발전용 PCS의 MPPT 제어알고리즘 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;So, Jeong-Hun;Choi, Ju-Yeop;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1359-1361
    • /
    • 2003
  • As the maximum power operating point(MPOP) of Photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration. In the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This pager proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF

TMC (Tracker Motion Controller) Using Sensors and GPS Implementation and Performance Analysis (센서와 GPS를 이용한 TMC의 구현 및 성능 분석)

  • Ko, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.828-834
    • /
    • 2013
  • In this paper, TMC (Tracker Motion Controller) as one of the many research methods for condensing efficiency improvements can be condensed into efficient solar system configuration to improve the power generation efficiency of the castle with Concentrated solar silicon and photovoltaic systems (CPV)experiments using PV systems. Microprocessor used on the solar system, tracing the development of solar altitude and latitude of each is calculated in real time. Also accept the value from the sensor, motor control and communication with the central control system by calculating the value of the current position of the sun, there is a growing burden on the applicability. Through the way the program is appropriate for solar power systems and sensors hybrid-type algorithm was implemented in the ARM core with built-in TMC, Concentrated CPV system compared to the existing PV systems, through the implementation of the TMC in the country's power generation efficiency compared and analyzed. Sensor method using existing experimental results Concentrated solar power systems to communicate the value of GPS location tracking method hybrid solar horizons in the coordinate system of the sun's azimuth and elevation angles calculated by the program in the calculations of astronomy through experimental resultslook clear day at high solar irradiation were shown to have a large difference. Stopped after a certain period of time, the sun appears in the blind spot of the sensor, the sensor error that can occur from climate change, however, do not have a cloudy and clear day solar radiation sensor does not keep track of the position of the sun, rather than the sensor of excellence could be found. It is expected that research is constantly needed for the system with ongoing research for development of solar cell efficiency increases to reduce the production cost of power generation, high efficiency condensing type according to the change of climate with the optimal development of the ability TMC.

Development of Improved P&O Algorithm of PV System Considering Insolation variation (일사량 변화를 고려한 PV 시스템의 개선된 P&O 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.166-176
    • /
    • 2010
  • The output characteristics of photovoltaic(PV) arrays are nonlinear and are affected by the temperature and solar insolation of cells. Maximum power point tracking(MPPT) methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe(P&O) method and constant voltage(CV) method. The proposed method is simulated under varying operating conditions. The effectiveness of these different MPPT methods is investigated thoroughly by PSIM simulation. The simulation results show that this proposed method provides better performance than conventional methods at a variable insolation without self-excited vibration of the power. By the simulation results, the validity of the proposed HB method is proved.

Developed MPPT Algorithm for Photovoltaic Systems without a Voltage Sensor

  • Momayyezan, Milad;Iman-Eini, Hossein
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1042-1050
    • /
    • 2013
  • This paper presents a study of maximum power point tracking (MPPT) for photovoltaic arrays with only one current sensor. Initially, a review of MPPT methods with only a current sensor is performed with extension for a variety of dc/dc converters. Furthermore, the same topology is developed to achieve better performance in the presence of sensor offset and environmental noise. The proposed method is robust, cost effective, and behaves well dynamically and in the steady state. After a theoretical analysis of presented approach, its validity and effectiveness are verified by simulation and experimental results.

A Novel MPPT Control of Photovoltaic Generation Using NFC Algorithm (NFC 알고리즘을 이용한 태양광 발전의 새로운 MPPT 제어)

  • Jang, Mi-Geum;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1865-1874
    • /
    • 2011
  • This paper proposes a novel maximum power point tracking(MPPT) using a new fuzzy control(NFC) algorithm for robust in insolation variation. Maximum power point(MPP) of solar cell has to achieve for improving output efficiency because it is changed with insolation and temperature. Conventional MPPT controller such as constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are researched. But these controller have the problem that is failure to MPP with environment changing. The proposed NFC controller is based the fuzzy control algorithm and able to robust control with environment changing. Also the proposed controller of PV system is modeled by PSIM and the response characteristics according to the parameter variation is compared and analyzed. The validity of this controller is proved through response results.