• Title/Summary/Keyword: Solar Power Satellite System

Search Result 65, Processing Time 0.033 seconds

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Electrical Design of a Solar Array for LEO Satellites

  • Park, Heesung;Cha, Hanju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.401-408
    • /
    • 2016
  • During daylight, the solar array of low earth orbit satellites harvests electrical power to operate satellites. The power conversion of the solar array is carried out by control of the operation point using the solar array regulator when the solar array faces the sunlight. Thus, the design of the solar array should comply with not only the power requirement of satellite system but also the input voltage requirement of the solar array regulator. In this paper, the design requirements of the solar array for low earth orbit satellites are defined, and the means of satisfying these requirements are described. In addition, the architecture of a multi-distributed interface is suggested to maximize the power harvested from a solar array having high temperature deviation between each panel. The power analysis in this paper shows the optimal number of multi-distributed interfaces with a converter.

Implementation of a Power Simulator for Energy Balance Analysis of a LEO Satellite (저궤도 위성의 에너지 균형 분석을 위한 전력 시뮬레이터의 구현)

  • Jeon, Moon-Jin;Lee, Na-Young;Kim, Day-Young;Kim, Gyu-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.176-184
    • /
    • 2010
  • The power simulator for a LEO satellite is a useful tool to analyze mission validity and energy balance for various mission scenarios by estimating power generation, power consumption, depth of discharge, bus voltage, charging/discharging current, etc. In this paper, it is described the calculation algorithm of the solar array (SA) power, the satellite load power and the battery modeling method to develop a satellite power simulation. To simulate the SA power generation, three different operation modes (DET, MPPT, CV) of SAR (Solar Array Regulator) are considered with a SA model. The satellite load power is estimated using the satellite unit power database, the unit on/off configuration at some satellite operation modes. The bus voltage and battery charging/discharging current at the specific DoD (Depth of Discharge) are calculated based on the battery characteristics. By this satellite power simulator, it can be conveniently analyzed the energy balance and the validity of a planned mission of a LEO satellite.

Experimental Investigation of Concentrating Photovoltaic System Applying Commercial Multi-array Lens for Space Applications (상용 배열형 렌즈를 적용한 집광형 태양전력시스템의 우주 적용 가능성 실험적 검토)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Yong-Geun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.622-627
    • /
    • 2014
  • A pico-class satellite has limitation to generate power from the solar cells due to its limited accommodation area to install the solar cells. The variation of incidence angle between solar panels and sunlight induced by the revolution and rotation of the satellite is one of the key parameters to determine the power generation. In this study, we proposed a concentrating photovoltaic system for pico-class satellite applications to enhance power generation when the ${\beta}$ angle between the sunlight and the solar panel is zero by effectively concentrating solar energy on solar panels. The feasibility of the conceptual idea has been demonstrated by power measurement test using solar simulator and commercial multi-array lens system.

Energy Balance Analysis of Communication Satellite at Transfer Orbit (통신위성 전이궤도 전력운용 분석)

  • Choi J.D.;Seong S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.189-192
    • /
    • 2003
  • Electrical power in satellite system should persistently satisfy specified power requirement even though that happen the failure of solar array string or battery cell during the mission operation. In this study, the solar array and battery of GEO Communication Satellite with 3kW capacity are designed, and energy balance analysis according to power operation mode are performed to meet specified power capacity at the transfer orbit

  • PDF

Energy Balance Analysis of Electrical Power System for Communication Satellite (통신방송위성 전력시스템의 Energy Balance 해석)

  • Choi Jae-dong;Koo Cheol-hea
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.81-84
    • /
    • 2001
  • In the power system of a satellite, solar array and a battery have directly impact on the life time of the satellite, and their stable operation is decided by whether their states are in the steady state operation or not. In this study, solar array capacity and battery characteristics of proposed communication satellite are designed and simulation is conducted according to the operation mode. Each operation mode is classified as the normal and worst case modes, respectively. The normal mode is analyzed under daylight and the eclipse with the EHT burn, and the worst case modes which have solar cell circuit failure, and battery cell failure are analyzed too.

  • PDF

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

On-orbit Analysis of Power Generation Efficiency of Concentrating Photovoltaic System Using Commercial Fresnel Lens for Pico Satellite Applications (상용 프레넬렌즈를 이용한 극초소형 위성용 집광형 태양전력 시스템의 궤도 전력생성효율 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.318-325
    • /
    • 2015
  • Pico satellite has limited surface to install the solar cells due to its extremely limited size. Also, the sun incidence angle with respect to the solar panel continuously varies according to the attitude control strategy and its important parameter for the power generation. In this study, a concentrating photovoltaic system for pico satellite application has been proposed that can enhance the power generation efficiency in case of the unfavorable condition of the sun incidence angle with respect to the solar panel of the satellite using the fresnel lens. To prove the possibility of maximizing the power generation efficiency of the proposed concentrating power system, we have performed the power measurement test using a solar simulator and commercial fresnel lens. And on-orbit analysis of the power generation efficiency using the STK which is a commercial S/W has also been performed based on the test results.