• Title/Summary/Keyword: Solar Panel

Search Result 363, Processing Time 0.029 seconds

Development of Deployment Test Equipment Suitable for Single Large Solar Panel (하나의 큰 태양전지판에 적합한 전개시험장치 개발)

  • Moon, Hong-Youl;Park, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.583-591
    • /
    • 2018
  • In this paper, we propose a new deployment test equipment that is characterized for the deployment test of single large solar panel with tape spring hinge. To perform the deployment test on ground, a device that takes gravity compensation into account should be used to create a zero gravity environment similar to that in orbit. We analyzed the advantages and disadvantages of the most commonly used deployment test equipment in the past through simple conceptual design, analysis, and tests to judge whether it is applicable to the deployment of the solar panel to be tested. A dummy frame was proposed to reduce the air drag effect during on-ground test and a self-aligning ball bearing and adjusting screws were applied to the deployment test equipment to solve the alignment problem with the gravity axis. And a horizontal bearing for radial movement applied to compensate for the change of the axis of the tape spring hinge. From these, we solved the problems of the conventional deployment test equipment by developing and verifying the new deployment test equipment characterized for the solar panel to be deployed in this paper.

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

The Performance Evaluation Study of PV-Solarwall Unit Module Solar Thermal-Electric Energy (태양에너지를 이용한 열-전기 동시생산을 위한 PV-Solarwall 단위모듈 성능평가 연구)

  • Kim, Yong-Hwan;Cho, Yil-Sik;Lee, Euy-Joon;Hyun, Myung-Taek;Kang, Eun-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.69-75
    • /
    • 2005
  • The PV-Solarwall system has been introduced as a promising alternative to harness solar energy for both heating applications and electricity generation simultaneously. The system comprises a PV solar panel(for electricity generation). In addition, the solarwall incorporates a fan strategically located behind the PV panel to bring the warm and fresh air from the solarwall into the room. Because of its location and convective cooling principle, the fan also serves to reduce the operating temperature of the PV panel thereby increasing its efficiency. So this PV-Solarwall system holds much promise for saving heating and electricity costs compared with a PV system without solarwall. In particular, by controlling the tilt angle of the entire PV-Solarwall system between $0^{\circ}$(horizontal) and $90^{\circ}$(vertical), the performance of the system can be further evaluated. It is expected that the range of tilt angle PV-Solarwall between $40^{\circ}$ and $50^{\circ}$ will improve the output of the system.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Density and Strength Properties according to the Paper Ash addition ratio of the Lightweight Composite Panel Core Using the Blast Furnace Slag and Polysilicon Sludge (고로슬래그와 폴리실리콘 슬러지를 활용한 경량복합패널 심재의 제지애시 첨가율에 따른 밀도 및 강도특성)

  • Lim, Jeong-Geun;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.152-153
    • /
    • 2015
  • Recently, solar energy generation is one of the fastest growing industries for eco-friendly energy. Every year, solar energy generation industry grows to 42% on average. However, polysilicon sludge is generated from processing of polysilicon but, there is nothing to handle that. Therefore, we need research to recycle polysilicon sludge. Also, improved fire resistance efficiency of wall is required according to reinforced fire safety standards due to many cases of big fires in our country. This study focuses on density and strength properties according to the addition ratio of paper Ash for the lightweight composite panel core with polysilicon sludge. As a result of the test, adding paper ash 9% has the best density and strength properties.

  • PDF

Wind loads on a solar array

  • Kopp, G.A.;Surry, D.;Chen, K.
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.393-406
    • /
    • 2002
  • Aerodynamic pressures and forces were measured on a model of a solar panel containing six slender, parallel modules. Of particular importance to system design is the aerodynamically induced torque. The peak system torque was generally observed to occur at approach wind angles near the diagonals of the panel ($45^{\circ}$, $135^{\circ}$, $225^{\circ}$ and $315^{\circ}$) although large loads also occurred at $270^{\circ}$, where wind is in the plane of the panel, perpendicular to the individual modules. In this case, there was strong vortex shedding from the in-line modules, due to the observation that the module spacing was near the critical value for wake buffeting. The largest loads, however, occurred at a wind angle where there was limited vortex shedding ($330^{\circ}$). In this case, the bulk of the fluctuating torque came from turbulent velocity fluctuations, which acted in a quasi-steady sense, in the oncoming flow. A simple, quasi-steady, model for determining the peak system torque coefficient was developed.

Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning (기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발)

  • Lee, Seungmin;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.353-360
    • /
    • 2016
  • Recently, solar photovoltaic(PV) power generation which generates electrical power from solar panels composed of multiple solar cells, showed the most prominent growth in the renewable energy sector worldwide. However, in spite of increased demand and need for a photovoltaic power generation, it is difficult to early detect defects of solar panels and equipments due to wide and irregular distribution of power generation. In this paper, we choose an optimal machine learning algorithm for estimating the generation amount of solar power by considering several panel information and climate information and develop a defect detection system by using the chosen algorithm generation. Also we apply the algorithm to a domestic solar photovoltaic power plant as a case study.

Study on Generation Volume of Floating Solar Power Using Historical Insolation Data (과거 일사량 자료를 활용한 수상태양광 발전량 예측 연구)

  • Na, Hyeji;Kim, Kyeongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.249-258
    • /
    • 2023
  • Solar power has the largest proportion of power generation and facility capacity among renewable energy in South Korea. Floating solar power plant is a new way to resolve weakness of land solar power plant. This study analyzes the power generation of the 18.7 MW floating solar power project located in Saemangeum, Gunsan-si. Since the solar power generation has a characteristic that is greatly affected by the climate, various methods have been applied to predict solar power generation. In general, variables necessary for predicting power generation are solar insolation on inclined surfaces, solar generation efficiency, and panel installation area. This study analyzed solar power generation using the monthly solar insolation data from the KMA (Korea Meteorological Administration) over the past 10 years. Monte Carlo simulation (MCS) was applied to predict the solar power generation with the variables including solar panel efficiency and insolation. In the case of Saemangeum solar power project, the most solar power generation was in May, the least was in December, the average solar power generation simulated on MCS is 2.1 GWh per month, the minimum monthly power generation is 0.3 GWh, and the maximum is 5.0 GWh.

Design and Implementation of a Bidirectional Power Supply Charger Using Super Capacitors and Solar Panel for Robot Cleaner Applications (슈퍼 커패시터 및 태양전지를 이용한 로봇청소기용 양방향 충전시스템 설계)

  • Zheng, Tao;Piao, Sheng-Xu;Kwon, Dae-Hwan;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.97-102
    • /
    • 2016
  • In this paper, a bidirectional power supply charger is proposed. This system used a solar cell panel to generate electricity and used super capacitors to store these energies, which can be used for the robot cleaner or some other electronic products. This system include a phase-shift controlled bidirectional dual active bridge (DAB) converter, solar panel super capacitors and DSP controller. In the daytime it can charge to the super capacitors to store the energy generated by the solar cell panel and in the night it will release the energy stored in the super capacitors to loads. A prototype of the proposed bidirectional power supply charger system was designed which can achieve 18V to 30V input, 10V/20W output to super capacitors and 9V/6.5W output when it acts as a charger for the robot cleaner. The system is verified to be sTable and reliable by both the simulation and experimental results.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.