• Title/Summary/Keyword: Solar Illuminance

Search Result 71, Processing Time 0.024 seconds

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Low Power of Safety Oriented Sidewalk Block using Dimming Technic (디밍 기술을 이용한 안전지향 보도블록의 저 전력화)

  • Jung, Heon;Yun, Jin-Yeong;Kim, Ji-Su;Kim, Sun-Gwan;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.585-590
    • /
    • 2017
  • In this paper, a low power of safety oriented sidewalk block was implemented using dimming technology using LED and illuminance sensor to prevent glare by high - intensity light source and prevent night traffic accident. The dimming system of this paper used a light bulb color with less fatigue to prevent glare and consumed 6.10Wh power. Also, it is confirmed that the power saving is about 56.9% when compared with the existing system.

Assessment of the Daylighting Performance in Residential Building Units of South Korea through RADIANCE simulation (시뮬레이션을 이용한 주거용 건축물의 공간별 채광성능 평가)

  • Lim, Tae Sub;Lim, Hong Soo;Koo, Jae-O;Kim, Gon
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • This paper focused on the daylighting performance of residential high-rise buildings in South-Korea. the purpose of this study is to estimate the visual environment of sunlight coming into opening according to sky conditions, orientation of windows and each space of Apartment buildings. Season of the year, weather, and time of day combine with predictable movement patterns of the sun to create highly variable and dynamic daylighting conditions. Daylighting design is usually based on the dominant sky condition and the micro-climate for the building site. There are three common sky conditions: clear sky, overcast sky, and partly cloudy sky. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Easily used charts, diagrams, and software programs allow study of solar geometry for any geographic location and time of day. on the other hand, the overcast sky is characterized by diffuse and variable levels of light and has dense cloud cover over 90% of the sky. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Efficient Lighting System for Amenity Light Environment (쾌적 빛 환경을 위한 효율적 조명 시스템)

  • Choi, Jong-Hyo;Oh, Myoung-Won;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.136-141
    • /
    • 2009
  • Considerable part of energy consumption is occurred by through buildings. Especially, Lighting energy consumption is most part of one in building. There is very various ways and systems for saving lighting energy. In method, It can be divided Passive Daylighting System and Active Daylighting System. Louver, Screen and use of window's character is representative ways of passive system. Reflection mirror, optical pipe and optical fiber is representative method of active system. Introducing day light on which place can't be introduced day light by typical method is important advantage of active system. Except introducing day lighting methods, efficient lighting management system can save lighting energy. It called lighting automation system. Representatively, Occupancy-related automation and Brightness-related automation system is that. According to occupancy and introducing daylighting level properly operate lamp's intensity of illumination that can save lots of energy. Though Introducing daylighting method, effective lighting system we can get proper intensity of illuminance level and energy saving.

  • PDF

Evaluation and Application of Prediction Models for the Daylight Performance of a Light-Pipe System (광파이프 시스템의 채광성능 예측모델의 검증 및 적용)

  • Yun, Geun Young;Shin, Ju Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The use of natural light has the potential for improving both the energy efficiency and indoor environmental quality in buildings. A light-pipe system can introduce daylight to spaces that would otherwise not be able to benefit from the advantages of daylight penetration. For the light-pipe system to be widely used in Korea, it is important to quantify its daylighting performance with due consideration regarding the effects imposed by the local climate conditions. This paper presents the evaluation results of existing semi-empirical models to predict daylighting performance of a light-pipe system. The evaluation of the existing models was based on the monitoring data obtained from a underground parking lot in which the light-pipe system was installed. Comparisons were made between the predicted and the monitored data obtained from the study. The results indicated that semi-empirical models which was developed using the experimental data obtained under the Korean climatic conditions had a good prediction performance. We also quantified the effects caused by sky conditions, solar altitudes, room dimensions, and the aspect ratio of a light-pipe system on both the daylighting performance of the light-pipe system and the indoor illuminance distributions of the space using the semi-empirical model. Finally, this paper provides the design guideline of the light-pipe system for its application to an underground parking lot space.

Evaluation of Indoor Thermal Environment according to Type and Color of Blinds Installed in the Classroom (교실에 설치된 블라인드의 유형과 색상에 따른 실내 온열환경 평가)

  • Kwon, Daehyeok;Lee, Jae-Ro;Oh, Juseok;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.224-232
    • /
    • 2017
  • Building energy saving have been put effort in a long time since buildings consume about 40.6% of total energy use, where heating, cooling and electrical lighting requirement results in energy consumption of building significantly. The window is an important part of building envelope, it usually brings a certain heat load from solar radiation while it allows light passing through, and properly leads to overheating in summer, hence the cooling load increase sand cause of thermal uncomfortable factor. The purpose of this study was to evaluate internal shade performance according to color and materials. There is growing interest in improving the sense of comfort among students who spend most of their time in the classroom. The study examined thermal environment and light environmental performance according to the color and materials of internal blinds to the school classroom. The results of this study were as follows; Among wooden blinds, aluminium blinds, and polyester blinds, the aluminium blinds were most excellent. In addition, among white blinds, light brown blinds, dark brown blinds, the light brown were most excellent.

Development of Solar Daylighting System Using Parabolic Mirrors (포물면 집광거울 방식의 태양광 집광채광시스템 개발)

  • Sung, Tae-Kyung;Lee, Chung-Sik;Kim, Jong-Min;Joung, Che-Bong;Kim, Byung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.240-245
    • /
    • 2013
  • We developed a parabolic reflector based daylighting system which can be used as an alternative indoor daytime lighting device such as for fluorescent lamps. The system comprises three main components : a daylight concentrator made of 4 pairs of parabolic reflectors and mirrors, a silica optical fiber bundle based light transmitter, and 4 light diffusers for the final indoor delivery of the collected daylight. We analyzed the performance of the system and revealed the system efficiency and daylighting factor. All test methods follow the rule, NR PV601 : 2007-daylighting system, governed by Korea Energy Management Corporation.

Daylighting Performance of Office Space Applied with Electrochromic Façade System (전기변색 외피시스템 적용 업무공간의 채광 성능 분석)

  • Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.131-140
    • /
    • 2022
  • A smart window is a new building material that can realize energy savings in a building. Smart windows can freely adjust Visible Light Transmittance (VLT) and solar gain coefficient (g-value) according to the situation. Smart windows include such technologies as Electrochromic (EC), Suspended Particle Device (SPD), and Polymer Dispersed Liquid Crystal (PDLC). Recent research on building energy savings through the VLT and g-value control functions of smart windows is being actively conducted and meaningful results are being drawn. However, since most of the research is focused on energy savings, research on the indoor environment is somewhat lacking. A building is a space where people live and the comfort of life should be prioritized before energy savings. Therefore, in this study, analysis on the daylight performance of an office space was carried out. Through green building standards such as LEED, BREEAM, CASBEE, and G-SEED, the daylight performance was reviewed according to VLT value changes of the smart window. In addition, a study was conducted on the VLT range of the electrochromic façade that can maintain a comfortable indoor environment. The smart window used electrochromic control with a wide range of VLT. The study showed that the minimum VLT of a smart window that can satisfy G-SEED is 25% or more. In addition, it was found that the VLT change of the electrochromic smart window did not significantly affect the uniformity of the room. When the LEED standard was applied, the minimum VLT value of the electrochromic smart window that must be maintained according to each orientation of the building was derived.

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Analysis of Temperature Influence Experiment on Green Spaces in Campus (캠퍼스 내 녹지공간의 온도분석 및 온도영향요인 규명 실험)

  • Kim, Jaekyoung;Kim, Wonhee;Kim, Eunil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.511-520
    • /
    • 2020
  • Owing to global warming, heat waves have become stronger in the summer, and research on improving the thermal environment of green spaces, such as urban parks, is being conducted. On the other hand, studies on improving the urban thermal environment, which is changing due to the greening pattern and the intensity of the wind, are still insufficient. This study analyzed the temperature of the green spaces on campus to understand the factors affecting the temperature changes. After investigating the covering condition and planting form of the site, factors, such as temperature, humidity, wind direction, wind speed, and illuminance, were measured. The most influential factors on the temperature distribution are evapotranspiration and wind - induced heat transfer. The other major factors affecting the temperature change were the type of cover, wind velocity/wind direction, type of planting, shade / solar irradiance. In the type of cover, the plant was classified as low temperature, and the asphalt pavement was classified as high temperature. In wind speed, instantaneous temperature was reduced by 1.2 ℃ in southern wind, 0.7 ℃ in the westerly wind, 0.4 ℃ in the north wind and 0.5 ℃ in the east wind when a wind of 3.5m/s or more was blown.