• 제목/요약/키워드: Solar Heat Flux

검색결과 138건 처리시간 0.023초

건축전열모델의 확장에 관한 연구 (Validation of Extended Building Heat Transfer Model)

  • 조민관
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.422-431
    • /
    • 2003
  • Theory of the building heat transfer is generally limited to the heat flux to the surfaces of windows and walls, which influences the indoor climate of a building, in the field of architectural environmental engineering. While the heat flux from the buildings to their environment has been considered in the viewpoint of urban climate, its conventional theory have been rarely examined. The purpose of this study is to propose a building-urban heat transfer model for defining the relation between the building and the urban climate by extending the building heat transfer model. In this study, the extended building heat transfer model, where response factor method is used, is established on the urban space and the indoor space by the boundary of building envelopes. Computer simulation (HASP/ACLD) is conducted on the subjected urban area by the established building-urban heat transfer model. As a result it is logically proved that the short waves of solar radiation, which interact with long Waves of radiation from the buildings and the earth, increase the urban air temperature ana buildings largely influence on the urban climate.

전산유체역학을 이용한 직접 접촉식 히트파이프의 응축부 형상에 따른 성능비교 (Performance Comparison on the Condenser Shapes of Direct Contact Heat Pipe using CFD)

  • 고요한;강경문;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.203-208
    • /
    • 2008
  • The purpose of this study is to compare the different shapes of condenser of the direct contact heat transfer from the heat pipe condenser to the receiving water using CFD. The heat transfer from the working fluid of the heat pipe to receiving fluid flows through the manifolder is one of the important part in evacuated solar collector system. The retrenchment of the thermal resistance between the heat pipe and the manifolder could increase the thermal performances of the whole system. Recently, direct heat transfer from the heat pipe condenser wall to the receiving water was suggested and accompanied experiments were achieved. This experiment shows the better performances of the direct contact heat transfer analogically. Preceding calculations are carried out for the performance comparison: mesh dependence test, discretization method test and equation model test. with these preceding tests, 4 different shapes of condenser are compared and each case were set up for the same heat flux at the condenser wall. The calculation result shows that the efficiency of the extended surface condenser shape is 10% higher then the that of the others.

  • PDF

다채널 체적식 태양열 흡수기에서 열전달 수치해석 (Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers)

  • 이현진;김종규;이상남;강용혁
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1383-1389
    • /
    • 2011
  • 본 연구는 태양열 발전에 사용하는 공기식 다채널 체적식 흡수기의 일관성 있는 열전달 해석에 초점을 두고 있다. 이를 위해 흡수 소재 물성과 채널 형상 변화의 영향을 몬테카를로 광선추적법에 기반한 광학 모델과 전도, 대류, 복사를 고려한 1 차원 열전달 모델에 동시에 반영하였다. 광학 모델 결과는 채널 반경 대비 길이의 형상비가 매우 커서 대부분의 태양 에너지는 15 mm 이내의 짧은 길이에서 흡수됨을 증명하고 있다. 복사 열손실 분류를 통해 채널의 낮은 흡수율에서는 방사 손실은 줄지만 반사손실이 증가하여 흡수기 효율이 감소하는 것을 보였다. 큰 채널 반경이나 작은 질량 유량으로 인해 흡수기 평균 온도가 상승할 때, 방사 손실과 반사 손실 모두 증가하지만 방사 손실의 영향이 더 큰 것으로 나타났다.

Surface Treatment of Air Gap Membrane Distillation (AGMD) Condensation Plates: Techniques and Influences on Module Performance

  • Harianto, Rachel Ananda;Aryapratama, Rio;Lee, Seockheon;Jo, Wonjin;Lee, Heon Ju
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.248-253
    • /
    • 2014
  • Air Gap Membrane Distillation (AGMD) is one of several technologies that can be used to solve problems fresh water availability. AGMD exhibits several advantages, including low conductive heat loss and higher thermal efficiency, due to the presence of an air gap between the membrane and condensation wall. A previous study by Bhardwaj found that the condensation surface properties (materials and contact angle) affected the total collected fresh water in the solar distillation process. However, the process condition differences between solar distillation and AGMD might result in different condensation phenomena. In contrast, N. Miljkovic showed that a hydrophobic surface has higher condensation heat transfer. Moreover, to the best of our knowledge, there is no study that investigates the effect of condensation surface properties in AGMD to overall process performance (i.e. flux and thermal efficiency). Thus, in this study, we treated the AGMD condensation surface to make it hydrophobic or hydrophilic. The condensation surface could be made hydrophilic by immersing and boiling plate in deionized (DI) water, which caused the formation of hydrophilic aluminum hydroxide (AlOOH) nanostructures. Afterwards, the treated plate was coated using hexamethyldisiloxane (HMDSO) through plasma-enhanced chemical vapor deposition (PECVD). The result indicated that condensation surface properties do not affect the permeate flux or thermal efficiency significantly. In general, the permeate flux and thermal efficiency for the treated plates were lower than those of the non-treated plate (pristine). However, at a 1 mm and 3 mm air gap, the treated plate outperformed the non-treated plate (pristine) in terms of permeate flux. Therefore, although surface wettability effect was not significant, it still provided a little influence.

이중 증기통로를 가지는 히트파이프의 열전달특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics of the Heat Pipe with a Double Vapor Path)

  • 전철호;장영석;김오근;노인창
    • 한국태양에너지학회 논문집
    • /
    • 제22권2호
    • /
    • pp.27-32
    • /
    • 2002
  • The Characteristics of heat transport in the heat pipe with a double vapor path and different kinds of the working fluid were investigated experimentally. The Experiment was carried out with acetone/ethanol. ethanol/ethanol. and in the aluminium container of the double vapor path. Performance measurements can be operated at the high level by 24000 w/m2 heat flux in the 1000mm evaporator. They are each estimated at the high temperature and experimentally reviewed the characteric of the heat rejection. The results shew that they are stably operated under each condition and the fluid was complemented each other at the fluid's experiment and brought about the extention of operating temperature. In this study, The reliable basic data obtained by the teste in the heat pipe with a double vapor path can be used for thermal design, manufacture, and production etc.

창덕궁 낙선재 외피 열류량 실측을 통한 열관류율 산정 및 열 성능 해석 (Overall Heat Transfer Coefficients and Thermal Performance Evaluation through Heat Flux Measurement at Nakseonjae in Changdeokgung)

  • 김민휘;김진효;권오현;한욱;정재원
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.190-195
    • /
    • 2008
  • The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.

  • PDF

와이어 망을 이용한 충돌 수분류의 열전달 증진 (Heat Transfer Augmenttaion by use of Wire Mesh-Screens in Impinging Water Jet)

  • 윤상호;이종수;최국광
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.43-51
    • /
    • 1999
  • Axisymmetric circular water jet impinges against rectangular heated surface with uniform hear flux and wire-mesh screens are set up in the nozzle-to-heater space to augment heat transfer. In the free jet region to be used them, pressure drop and intensive turbulence flow was brought up. When water jet system is not used wire-mesh screens, maximum heat transfer appears in the stagnation point and the secondary maximum appears X/D=4 but it disappears when they are is used. In the low velocity(Vo<6.0m/s), coarse mesh-screen enhanced heat transfer but fine mesh-screens inpeded heat transfer. In the high velocity(Vo>6m/s), all of them enhanced heat transfer. Average Nusselt number of experimental system to be used wire-mesh screens was promoted $4{\sim}6$times than that of simple water jet system. The stagnation heat transfer of experimental system to be used wire-mesh screens was augmented 6times that of simple water jet system.

  • PDF

위성체 2-D 구조물의 열 안정성 해석 (Thermal Stability Analysis of 2-D Spacecraft Appendage)

  • 윤일성;송오섭;김규선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

태양열 집열기 기능을 갖는 BIPV 시스템의 응용 (Application of BIPV System Functioned as Solar Collector)

  • 민성혜;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.953-958
    • /
    • 2006
  • Perimeter zone has been reinforced by active systems, such as fan-coil units, because it causes an increase in heating and cooling loads, dew condensation in winter, or discomfort with cold-draft to residents in buildings, through poor insulation by light-weighed skin due to progressing multi-storied buildings and skyscrapers. However, because these active systems raise Its capacity so that fossil fuel is used as much as they are added, and ultimately, greenhouse effect is urged, we proposed BIPV system functioned as solar collector which can substitute active system. As an early stage, heat balance equation in steady-state by Fortran was used not only for pre-heating effect and electric power capacity during the day in winter, but also for electric power capacity during day in slimmer and sky radiation effect during night in summer. Especially, we should have considered shading on PV, since even a little bit of it makes the efficiency too low for the PV to work. Still, when the flux of pre-heated air was increased to make air-barrier, its temperature was not enough to make it because the speed of heat exchange was too fast to warm up the air, thus the capacity to meet the condition was evaluated, and electric power from PV was made used for it.

  • PDF

작동유체가 양방향성 태양열 열다이오드의 열성능 변화에 미치는 영향 분석 (Effect of Working Fluids on the Thermal Behavior of a Bi-directional Solar Thermal Diode)

  • 고영주;이헌주;천원기;;임상훈
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.9-17
    • /
    • 2008
  • An experimental investigation has been carried out to study the effects of different working fluids on the behavior and thermal performance of a hi-directional thermodiode. The thermodiode was made up of two rectangular loops mounted between a collector plate and a radiator plate. Rotatable joints between the horizontal and inclined segments of the loops enable easy alteration of the direction of heat transfer. The loops and the tank were filled with a working fluid for effective heat transfer when the thermodiode was forwarded biased. Six different working fluids were tested with thermal conductivity values ranging from 0.1 to $0.56W/m-^{\circ}C$, thermal expansion coefficient values ranging from $1.8\;{\times}10^{-4}$ to $1.3\;{\times}\;10^{-3}\;K^{-1}$, and kinematic viscosity values ranging from $0.65\;{\times}\;10^{-6}$ to $100\;{\times}\;10^{-6}\;m^2/s$. Especially, mixtures of $Al_2O_3$ (30nm Particle) in deionized water have been tested for the volumetric ratios of 0.01, 0.02, 0.03, 0.1, 0.2%. Each experiment was carried out after the loop was filled with a working fluid for effective heat transfer and the thermodiode was forwarded biased. The solar thermodiode was heated by a radiant heater consisting of 20 halogen lamps that generated a heat flux of about $1000\;W/m^2$ on the collector surface. Results are given in terms of temperature development in different parts of the loop as heat is delivered from its hot end to the surrounding atmosphere by the radiator made of copper plates.