• Title/Summary/Keyword: Solar Heat Flux

Search Result 138, Processing Time 0.03 seconds

Variations of the Polar Temperature in the Lower Stratosphere during 1955-2004

  • Choi, Wookap;Kim, Dongjoon
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.429-439
    • /
    • 2008
  • The lower-stratospheric polar temperature in winter and spring for both hemispheres is investigated based on the NCEP/NCAR 50-year reanalysis data with respect to the strength of the stratospheric eddy heat flux. Both the polar temperature and the eddy heat flux show significant variation on the decadal and year-to-year time scales except during the Southern Hemisphere winter. The year-to-year variation in the polar temperature is mainly determined by the eddy heat flux convergence. The eddy heat flux convergence is compared with the diabatic heating rate obtained from a two-dimensional model. Radiative heating caused by absorption of solar radiation is comparable to the heating caused by the eddy heat flux convergence in the Southern Hemisphere. The effect of ozone depletion on diabatic heating has been found to be secondary in the Northern Hemisphere, even in March 1997 when the record depletion of ozone took place.

A Experimental Study on the Boiling Heat Transfer Characteristics of Nanofluids by the Size and Mixing Ratio of Graphene Particle (그래핀 입자의 크기와 혼합비율이 나노유체의 비등열전달에 미치는 영향에 대한 실험적 연구)

  • Park, Sung-Seek;Kim, Young Hun;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.53-62
    • /
    • 2015
  • Boiling heat transfer characteristic is very important in the various industries such as solar thermal system, power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. Therefore, in this study, boiling heat transfer characteristics such as critical heat flux (CHF) and heat transfer coefficient under the pool boiling state were tested using graphene nanofluids. Graphene used in this study, which have the same thermal conductivity but with different sizes. The experimental results showed that the highest the CHF and boiling heat transfer coefficient increase ratio for graphene nanofluids was at the 0.01 vol.%. At the present juncture, the CHF and boiling heat transfer coefficient increase ratio of the small-sized graphene nanofluids was higher than the large-sized graphene nanofluids.

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Effects of Absorber Tube Shape and Operating Conditions on Thermal Performance of All-Glass Evacuated Tube Solar Collectors (이중 진공관형 태양열 집열기의 집열관 내부 형상과 운전 조건이 성능 변화에 미치는 영향)

  • Choi, Eun-Young;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • All-glass evacuated tube solar collectors consist of glass evacuated tubes and absorber tubes. Solar thermal energy from the sun is transferred to the working fluid through the glass evacuated tube and the absorber tube. Several collectors which have different absorber tubes are tested to find the effects of the absorber tube shapes and the operating conditions such as the incident heat flux and the flow rate. As the results, the efficiency of the collector which has a finned tube U tube is about $2{\sim}5%$ higher than that of the others in all cases on an average. And the collector has a finned U tube has the highest efficiency at the high flow rate and the low incident heat flux. In this condition, the outlet mean temperature is low and the heat loss becomes small. Also, it is known that the fin effect is greater than the shade effect.

Numerical Simulation on the Heat Transfer Characteristics of a Solar Thermal Receiver Depending on the End-Wall Angle Variation (고온 태양열 흡수기의 후벽 각도 변화에 따른 열전달 특성에 관한 수치적 모사)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kang, Yong-Hyeog
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2100-2105
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a high-temperature, high heat flux solar receiver as the end-wall angle varied. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as a typical one that employs a molten-salt circulation loop with the same outer dimensions. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. FLUENT, a commercial software, was employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels and heat pipes. The numerical results were compared and analyzed from the view point of heat transfer characteristics the solar receiver system.

  • PDF

A Theoretical Study on the Boiling Heat Transfer Performance of Tubes with Extended Surfaces (확대 전열관의 비등열전달에 관한 이론적 연구)

  • Jho, S.G.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.45-56
    • /
    • 1999
  • The performance of vertical and horizontal tubes with extended surface of rectangular and triangular cross section was investigated theoretically for boiling heat transfer. A simple method for numerical program assuming one-dimensional heat flow was used to predict the performance of these extended surface tubes. The object of this study was to predict the effects of the height, thickness, numbers and, clearance of the extended surface on boiling heat transfer. The results showed that extended surfaces are quite effective as compared to plane surfaces especially near the bum-out point and to promote heat flux in boiling heat transfer.

  • PDF

Comparative Analysis of Surface Heat Fluxes in the East Asian Marginal Seas and Its Acquired Combination Data

  • Sim, Jung-Eun;Shin, Hong-Ryeol;Hirose, Naoki
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Eight different data sets are examined in order to gain insight into the surface heat flux traits of the East Asian marginal seas. In the case of solar radiation of the East Sea (Japan Sea), Coordinated Ocean-ice Reference Experiments ver. 2 (CORE2) and the Objectively Analyzed Air-Sea Fluxes (OAFlux) are similar to the observed data at meteorological stations. A combination is sought by averaging these as well as the Climate Forecast System Reanalysis (CFSR) and the National Centers for Environmental Prediction (NCEP)-1 data to acquire more accurate surface heat flux for the East Asian marginal seas. According to the Combination Data, the annual averages of net heat flux of the East Sea, Yellow Sea, and East China Sea are -61.84, -22.42, and $-97.54Wm^{-2}$, respectively. The Kuroshio area to the south of Japan and the southern East Sea were found to have the largest upward annual mean net heat flux during winter, at -460- -300 and at $-370--300Wm^{-2}$, respectively. The long-term fluctuation (1984-2004) of the net heat flux shows a trend of increasing transport of heat from the ocean into the atmosphere throughout the study area.

Water Circulation Characteristics of a Water/Steam Receiver for Solar Power Tower System at Various Heat Fluxes (타워형 태양열 발전 흡수기의 열유속에 따른 수순환 특성 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Yong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • This paper describes water circulation characteristics of a water/steam receiver at various heat fluxes. The water/steam receiver for a solar tower power system is a natural circulation type. Experimental conditions of water and steam were set at a pressure of 5 bar and temperature of $151.8^{\circ}C$. The experimental device for the water/steam receiver consisted of a steam drum, upper/lower header, riser tubes, and downcomer tube. The experiments were conducted by varying heat fluxes in terms of mass flow rate in each riser tube. However, the total mass flow rate on the riser tubes was fixed at 217.4 g/s. For the uniform heat flux, while the water temperature of the steam drum and upper header were kept at steady state, the temperature of the lower header was fluctuated. For the non-uniform heat flux, while the temperature of the steam drum was kept steady state, the temperature difference increased in the right and left side of the upper header, and the temperature of the lower header was fluctuated.