• 제목/요약/키워드: Solar H

검색결과 1,385건 처리시간 0.032초

광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究) (The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System)

  • 김태성
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

Hot-Wire CVD법에 의한 microcrystalline silicon 박막의 저온 증착 및 전기 구조적 특성 (Electrical and Structural Properties of Microcrystalline Silicon Thin Films by Hot-Wire CVD)

  • 이정철;유진수;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}$c-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below 300$^{\circ}C$. The SiH$_4$ concentration[F(SiH$_4$)/F(SiH$_4$).+(H$_2$)] is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}$c-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}$c-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of B$_2$H$\_$6/ to SiH$_4$ gas. The solar cells with structure of Al/nip ${\mu}$c-Si:H/TCO/g1ass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Atmospheric Effects during Solar Storms

  • Lee, J.H.;Choi, G.H.;Kim, J.W.;Seo, S.B.;Lee, S.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.840-842
    • /
    • 2003
  • Recent satellite data have revealed a correlation between the Sun’s activities and the Earth’s atmosphere . Many scientists have been conjectured a more direct connections between solar variability and the Earth’s atmosphere from satellite data analysis. During solar storms, more energetic particles reach the Earth’s atmosphere and this phenomenon have effects on the Earth’s atmospheric environment. Consequently, scientists suggest that these variations will affect a global climate change. In this study, we investigate the confirmative research results of atmospheric effects due to solar activities, especially solar storms.

  • PDF

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;안세진;윤재호;송진수;윤경훈
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.31-36
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film(a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides(TCO) in order to see the effect of TCO/p-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage VOC than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer(${\mu}c-Si:H$) between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{OC}$ of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{OC}$ of 994mV while keeping fill factor(72.7%) and short circuit current density $J_{SC}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{OC}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;;이준신;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.158-161
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film (a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides (TCO) In order to see the effect of TCO/P-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage $V_{oc}$ than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer $({\mu}c-Si:H)$ between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{oc}$, of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{oc}$, of 994mv while keeping fill factor (72.7%) and short circuit current density $J_{sc}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{oc}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

Shelf Type 태양열 건조기의 성능평가 (Evaluation of a Shelf Type Solar Dryer)

  • 이길동;조서현;최영희;이남호;오정무
    • 태양에너지
    • /
    • 제7권2호
    • /
    • pp.30-36
    • /
    • 1987
  • A shelf type solar dryer of simple design has been constructed and its performance evaluated by KIER (Korea Institute of Energy and Resources). Experimental result, the rate of moisture removal of the dried sguid in dryer is higher to that obtained by conventional sun drying. Design modification are suggest to improve its performance.

  • PDF

Acidity in Precipitation and Solar North-South Asymmetry

  • Moon, Ga-Hee;Ha, Kyoung-Yoon;Kang, Seong-Hoon;Lee, Byoung-Ho;Kim, Ki-Beom;Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.325-333
    • /
    • 2014
  • We are motivated by both the accumulating evidence for the connection of solar variability to the chemistry of nitrogen oxide in the atmosphere and recent finding that the Galactic cosmic-ray (GCR) influx is associated with the solar north-south asymmetry. We have analyzed the measured pH in precipitation over the 109 stations distributed in the United States. We have found that data of pH in precipitation as a whole appear to be marginally anti-correlated with the solar asymmetry. That is, rain seems to become less acidic when the southern hemisphere of the Sun is more active. The acidity of rain is also found to be correlated with the atmospheric temperature, while not to be correlated with solar activity itself. We have carried on the analysis with two subsamples in which stations located in the east and in the west. We find that the pH data derived from the eastern stations which are possibly polluted by sulfur oxides and nitrogen oxides are not correlated with the solar asymmetry, but with the temperature. On the contrary, the pH data obtained from the western stations are found to be marginally anti-correlated with the solar asymmetry. In addition, the pH data obtained from the western stations are found to be correlated with the solar UV radiation. We conclude by briefly pointing out that a role of the solar asymmetry in the process of acidification of rain is to be further examined particularly when the level of pollution by sulfur oxides and nitrogen oxides is low.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Trichloroethlylene (TCE)의 광화학적 분해 및 독성 저감 (Solar Photochemical Degradation and Toxicity Reduction of Trichloroethlylene (TCE))

  • 박재홍;권수열
    • 청정기술
    • /
    • 제12권4호
    • /
    • pp.244-249
    • /
    • 2006
  • 지하수 오염의 주요원인 중 하나인 TCE를 태양광과 $TiO_2$ 광촉매를 사용하여 광분해할 때 주요변수인 오염물의 초기농도, $TiO_2$ 주입량, pH, 산화제로서 persulphate($S_2O{_8}^-$) 및 $H_2O_2$가 광촉매 반응에 미치는 영향을 파악코자 하였다. 분석 결과 $TiO_2$ 주입량, pH 및 산화제를 증가시킬수록 TCE의 분해효율이 향상되었으나, TCE의 초기주입농도를 증가시킨 경우에는 분해효율이 감소되었다. 첨가제의 종류에 따른 영향을 살펴본 결과 $H_2O_2$를 사용한 경우가 persulphate를 사용한 경우보다 더욱 효과적인 것으로 나타났다. 또한 상대독성에 대한 분석결과 $solar/TiO_2/H_2O_2$ 공정이 가장 효과적인 것으로 나타났으며 반응시간 150분에서 $solar/TiO_2/persulphate$ 공정보다 약 15%, $solar/TiO_2$ 공정보다 약 35% 낮게 나타났다.

  • PDF

프로터결정 실리콘 다층막 태양전지의 특성 연구 (Characterization of the protocrystalline silicon multilayer solar cells)

  • 권성원;곽중환;명승엽;임굉수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.145-148
    • /
    • 2006
  • The protocrystalline silicon (pc-Si:H) multilayer solar cell is very promising owing to its fast stabilization with low degradation against light irradiation. However, the pc-Si:H multi layers have not extensively been investigated in detail on its material characteristics yet. We present the material characteristics of pc-Si:H multilayer using a transmission electron microscopy(TEM), and Raman spectroscopy. In addition, we present the superior light-soaking behavior of the pc-Si:H mutt i layer solar cell. A TEM micrograph shows that a pc-Si:H multilayer has a repeatedly layered structure and crystalline-like objects in a-Si:H matrix. A Raman spectra introduces improved short-range-order and medium-range-order in pc-Si:H multilayer. As a result the excellent metastability of the pc-Si:H multilayer solar cell is primarily due to the repeatedly layered structure that improves a structural order in absorber layer.

  • PDF